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0 Introduction

These are my notes for the Topics in Algebra course taught in the Fall of 2019 by Dr Ana
Lecuona.

If you find any errors please tell me (or email me at asnadiga@gmail.com).

1 First Isomorphism Theorem

Theorem 1.0.1: First Isomorphism Theorem
If ϕ : G→ H is a homomorphism of groups then G/Ker(ϕ) ∼= Im(ϕ)

Definition 1.0.2
Let G be a group and H1 and H2 be subgroups. Then the join of H1 and H2 is

H1 ∨H2 =
⋂

H1H2≤G′

G′.

The join of two subgroups is the smallest subgroup containing both.

Lemma 1.0.3
Let H and N be subgroups of a group G, and let N be normal in G. Then H ∨N =
HN . Moreover, if H is also normal in G, then HN is normal in G.

Proof. We will show that HN is a subgroup. Since H ∨N is the smallest subgroup that
contains HN , this will prove the proposition. So let x = h1n1 ∈ HN and y = h2n2 ∈
HN . We msut show that xy−1 ∈ HN . xy−1 = h1n1n

−1
2 h−12 . Since N is a normal

subgroup, this is h1h
′(n1n

−1
2 ) for some h′, and this is an element of HN .

Now suppose that H is normal in G. Then for any g ∈ G, g(hn)g−1 = ghg−1gng−1, and
since H and N are normal they are closed under conjugation and this is an element of
HN .

Theorem 1.0.4: Second Isomorpism Theorem
Let H and N be subgroups of a group G, and let N be normal in G. Then H/(H ∩
N) ∼= NH/N .

Proof. First we must show that H/(H∩N) and NH/N are groups at all (done by showing
that the subgroups are normal in the appropriate groups). Let i : H → HN by h 7→ heN ,
and let q : HN → HN/N by hn 7→ (hn)N . Now let f = q ◦ i : H → HN/N . Then
Im(f) = HN/N and Ker(f) = H ∩N . Now we apply the first isomorphsim theorem to
get the result.

Theorem 1.0.5: Third Isomorphism Theorem
If H and K are normal subgroups of a group G, and K ⊆ H, then (G/K)/(H/K) ∼=
G/H
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Theorem 1.0.6: Correspondence Theorem
Let K be a normal subgroup of a group G. There is a one to one correspondence
between (normal) subgroups H of G that contain K and (normal) subgroups of G/K.
This correspondence is given by H 7→ H/K.

2 Series of Groups

Definition 2.0.1
A group G is simple if it has no non-trivial normal subgroups.

Note that this definition is equivalent to saying that G has no non-trivial factor groups.

Definition 2.0.2
Consider a finite series of subgroups of a group G, {1G} = H0 ≤ H1 ≤ · · · ≤ Hn = G.
• If Hi E Hi+1 for all i the series is a a subnormal series.
• If Hi E G for all i then the series if a normal series.
• If a series is normal or subnormal, then the groups Hi+1/Hi are called factor

groups of G.
• If all the factor groups of a subnormal series are simple it is a composition series.
• If all the factor groups of a normal series are simple then it is a principal series.

Note that if a group is Abelian then all series are normal and principal series.

Example 2.0.3
• In (Z,+), the series {0} ≤ 8Z ≤ 4Z ≤ Z is a subnormal (or normal since Z

Abelian) but not principal series.
• D8, the dihedral group with 8 elements has the following subnormal series
{1} ≤ 〈s〉 ≤ 〈r2, s〉 ≤ D8. To check that this series is subnormal note that the
index of each subgroup in the following subgroup is 2.
• In (Z15,+), both of the following series are normal (beacuse the group is

Abelian): {0} ≤ ∠5〉 ≤ Z15, and {0} ≤ 〈3〉 ≤ Z15.

Definition 2.0.4
{Kj} is a refinement of a series of subgroups {Hi} if {Hi} ⊆ {Kj}.

Definition 2.0.5 (T)
o subnormal series {Hi} and {Kj} are isomorphic if there exists a bijection between
{Ki+1/Ki} and {Hi+1/Hi} such that corresponding factor groups are isomorphic.

The third example from above is an example of isomorphic series.
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Theorem 2.0.6: Schreier’s Theorem
The subnormal series of the same group admit isomorphic refinements.

We do not prove this theorem, but the proof of the theorem is constructive, meaning that
it gives the refinements of each series that are isomorphic.

Example 2.0.7
The series {0} ≤ 8Z ≤ 4Z ≤ Z, and {0} ≤ 9Z ≤ Z can be refined to {0} ≤ 72Z ≤
8Z ≤ 4Z ≤ Z and {0} ≤ 72Z ≤ 18Z ≤ 9Z ≤ Z, respectively. These refinements are
isomorphic.

Proposition 2.0.8
Z has no composition series.

Proof. Suppose for contradiction that {0} E H1 E · · · E Hn = Z. Then we know that
all normal subgroups are of the form mZ for some m ∈ Z. This is true in particular for
H1. But then H1/{0} ∼= Z, and this is not simple, contradicting the assumption that we
have a composition series.

Theorem 2.0.9: Jordan-Holder
Let G be a group that admits a composition series. Then any two composition series
are isomorphic.

Proof. Let {1G} E H1 · · · E Hn = G and {1G} E K1 E · · · E Kr = G be two compo-
sition series. We want to show that {Ki+1/Ki} and {Hi + 1/Hi} are isomorphic up to
reordering. We proceed by induction on the length of the shorter of the two series. With
out loss of generality we can assume that {Hi} is the shorter of the two sequences.
The base case is where the shorter series has length 1. This would mean that the group
is trivial, and thus only admits on composition series.
Now suppose that the result is true when one of the sequences is of length less that
n, and consider the composition series {Hi}ni=0 and {Ki}ri=0. The first case is when
Hn−1 = Kr−1. In this case the series up to this point will both by isomorphic by the
inductive hypothesis. Since the two groups are isomorphic, and obviously the series after
this point are identical.
Now suppose that H = Hn−1 and K = Kr−1 and H 6= K. Let L = H ∩K. Since H and
K are normal in G, L is normal in G as well, and thus L is normal in both H and K.
Now we claim that L has a composition series given by Li = L ∩Hi. The proof of this
claim breaks into the following steps:

1. L0 = {1G} and Ln−1 = L.
2. Li E Li+1 because Hi E Hi+1.
3. Li+1/Li is simple: For all i, note that Li E Hi FINISH ME

Now we have the composition series L0 E L1 E · · · E L and we could potentially extend
it by adding either H or K to the end. To do this we would have to show that H/L
and K/L are simple. Since H and K are normal in G, we know that the subgroup that
is their product, HK is normal in G as well by the lemma from above. Then by the
correspondence theorem, HK/K E G/K. We know that G/K is simple, so HK/K must
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either be all of G/K or the trivial subgroup. If it were the trivial subgroup that would
mean H = K which we handled in the previous case. Thus we assume that HK = G.
By the second isomorphism theorem, we have that

H/L = H/(H ∩ L) ∼= HK/K = G/K.

Since G/K is simple, so is H/K. Similar arguments work to show that K/L is simple.
Now we have two compositions series, L0 E · · · E Ln−1 E H and H0 E · · · E H. By the
inductive hypothesis these are isomorphism. Similarly, we have L0 E · · · E Ln−1 E K
and K0 E · · · E K which must be isomorphic. This specifically means that n−1 = r−1,
so r = n (r is the length of the composition series {Ki} and n is the length of the
composition series {Hi}.
Now the sequences that end in H and in K have identical (even in order) factor groups
except for the last ones. This means that {Hi}n−1i=0 and {Ki}n−1i=0 are isomorphic with the
exception of the last factor groups. These last factor groups are H/L = H/(H ∩K) ∼=
HK/K = G/K, and K/L = K/(K∩H) ∼= KH/H = G/H, respectively. We resolve this
issue by adding G to the end of both of the series, which will add a final factor group of
G/H and G/K, respectively. This shows that {Hi} is isomorphic to {Ki}.
Now we can add on either H and then G or K and then G to the end of the composition
series {Li}. This would add the factors G/H,H/L = H/(H ∩K) ∼= HK/K = G/K or
G/K,K/L = K/(K ∩H) ∼= KH/H = G/H.

Theorem 2.0.10
If G has a composition (or principal) series, and N E G then there is a composition
(or principal) series containing N .

Proof. Start with a composition (or principal) series, and {1G} E N E G. By Schrier’s
Theorem, they admit isomorphic refinements, but we obviously can not refine the com-
position (or principal) series any more. Thus the refinement of {1g} E N E G will have
all simple factor groups, and will be a composition (or principal) series containing N .

Definition 2.0.11
A group G is solvable if it has a composition series with Abelian factor groups.

We don’t get to see the applications of solvable groups, but apparently they exist in Galois
Theory.

Example 2.0.12
• {1} E A3 E S3 is a composition series with factor groups Z2 and Z3 (up to

isomorphism), so S3 is solvable.
• {1} E A5 E S5 is a composition series with non-abelian factor groups. Since all

composition series are isomorphic, no composition series of S5 has all abelian
factor groups. Thus S5 is not solvable.

Definition 2.0.13
If G is a group then the center of G is Z(G) = {z ∈ G | zx = xz for all x ∈ G}.
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Clearly the center is a normal subgroup. Using the correspondence theorem, we can consider
Z1, the subgroup of G corresponding to Z(G/Z(G)) E G/Z(G), Z2 the subgroup of G
corresponding to Z(G/Z1(G)), and so on. Then we get the ascending central series of G:

{1} E Z(G) E Z1(G) E · · · .

Example 2.0.14
• Z(S3) = {1}. This means that the ascending central series is just {1} E {1} E
{1} E · · · .
• Z(D4) = 〈r2〉. Then D4/Z(D4) has 4 elements, and all groups with 4 elements

are abelian, meaning that the center is the whole group. Thus we get the
ascending central series {1} E 〈r2〉 E D4 E D4 E · · · .

3 The Sylow Theorems

Definition 3.0.1
If G is a group and X is a set, then G acts on X if there is a map φ : G ×X → X
where φ(g, x) is denoted g · x such that

1. 1G · x = x for all x ∈ X, and
2. h · (g · x) = (hg) · x.

The orbit of a group element x under the action of G is OrbG(x) = {g · x | g ∈ G} and the
stabilizer of x is StabG(x) = {g ∈ G | g ·x = x}. Clearly the stabilizer is a normal subgroup
of G.

Theorem 3.0.2
If a finite group G acts on a set X, then for any x ∈ X there is a bijection φ :
G/StabG(x) → OrbG(x). In particular, |G|/|StabG(x)| = |OrbG(x)|. Moreover, the
orbits for a partition of X.

Definition 3.0.3
The fixed points of a group action of G on X is the set XG = {x ∈ X | g · x =
x for all g ∈ G}.

Remarks:

• x ∈ XG ⇐⇒ OrbG(x) = {x}, and

• If |X| <∞, then |X| = |XH |+
∑m

i=0 |Oi|, where the sum is over the orbits of X that
have more than one element.

Lemma 3.0.4
Let G be a group of order pn where p is some prime and n is sime positive integer,
and let G act on some finite set X. Then |X| ≡ |XG| mod p.
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Proof. By the above theorem, |OrbG(x)| | |G|, which means that |OrbG(x)| is a power
of p. Then we can apply the second remark to get the result.
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