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1 Introduction

We begin with a motivating example. Imagine that we have a blank regular tetrahedron

and we are given r colors and asked to color each face. Since the tetrahedron has 4 faces, it

would seem like there would be r4 colors. However, if we dropped some of the tetrahedra off

our table it is possible that two different coloring would end up looking the same after being

shuffled around. Therefore, we are interested in figuring out the number of indistinguishable

colorings of a tetrahedron. More formally, we call two colorings of a tetrahedron indistin-

guishable if some orientation preserving symmetry of the tetrahedron makes one coloring

look like the other.

In the specific instance in which we have two colors, red and blue, we can figure out how

many indistinguishable colorings there are by counting them: there are:

• One using only red

• One using red on three faces on blue on one

• One using red on two faces and blue on two
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• One using red on one face and blue on three

• One using only blue.

So we conclude that there are 5 indistinguishable colorings of the tetrahedron using two

colors. We could try to repeat a similar process with different numbers of colors, but this

will quickly become infeasible as there are 15 indistinguishable colorings with three colors,

36 with four colors, and 75 with 5 colors. With just 10 colors there are 925 indistinguishable

colorings!

Moreover, this specific example hardly gives us any insights to coloring other geometric

objects. We are interested in finding a general way to count the number of indistinguishable

ways to color various objects that does not rely on enumerating cases. It turns out we will use

some results from representation theory. By combining the group theory and combinatorial

arguments, we can understanding the coloring problem in a general setting.

2 Burnside Counting Theorem

Let Ω be some finite point set and G be some group of permutations that acts on Ω. Then

we can define a “natural” representation of G in Rn. Think of the points of Ω as 1, 2, ..., n,

and then identify with them the natural basis vectors e1, e2, ..., en. Then for each g ∈ G,

we can define ρ(g) to be the invertible linear transformation represented by the permutation

matrix T (g) which has entries tij =
{

1 if g(i)=j
0 otherwise

.

Let χ be the character of this representation, and let χ1 be the trivial character. Then

the number of times that the trivial character “appears in” χ will be 〈χ, χ1〉 =
1

|G|
∑
g∈G

χ(g).

Now we will digress to a seemingly unrelated issue, that of counting the number of orbits
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of Ω under G. Specifically, we will prove that the number of orbits is exactly the number of

times that the trivial character appears in χ. More formally:

Theorem 1. Let G be a group acting on the point set Ω, and let χ be the character of the

natural representation of G described above. Then

r =
1

|G|
∑
g∈G

χ(g)

Where r is the number of orbits of Ω under G.

Proof. We denote the action of g ∈ G on x ∈ Ω by g(x). Note that χ(g) is the number

of elements of Ω that are fixed by the action of g (that is the number of x ∈ Ω such that

g(x) = x).

We will prove the theorem by counting the number N of pairs (g, x) such that g(x) = x

in two different ways.

First fix some x ∈ Ω. We want to find the number of g ∈ G such that g(x) = x. So we

need |Gx| where Gx is the stabilizer of x in G. So N =
∑

x∈Ω |Gx|.

Before moving forward, we partition Ω into the union of orbits (where there are r orbits)

G(x1) ∪G(x2) ∪ ... ∪G(xr)

Then we can rewrite N as
r∑
i=1

∑
x∈G(xi)

|Gx|. Since the size of the stabilizer is constant on

orbits, N =
r∑
i=1

|G(xi)||Gxi |. Since the order of the stabilizer times the size of the orbit is

just the order of G for any element in G, we get N =
r∑
i=1

|G| = r|G|.

Now we will find N by first holding g ∈ G constant. Now we want to know the number

of x ∈ Ω such that g(x) = x. As we noted above this is simply χ(g). So we see that

N =
∑
g∈G

χ(g)
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So r|G| = N =
∑
g∈G

χ(g), and thus

r =
1

|G|
∑
g∈G

χ(g)

Later we will see a powerful application of this theorem that will allow us to figure out

the number of ways to count the number of indistinguishable colorings of various objects.

3 Cycle Index of Permutation Groups

Let G be the permutation group acting on a point set X = {1, 2, ..., n}.

In general, the one cycles are omitted when writing g, but for our purposes we will include

them. Each g ∈ G is the composition of disjoint cycles. Furthermore, the sum of the lengths

of these cycles will be n. So we can let αi be the number of disjoint cycles of length i in g,

and
∑n

i=1 αi · i = n. We assign g an expression

ζg(x1, x2, ..., xn) = xα1
1 x

α2
2 · · ·xαn

n

For this moment, we want to treat the xi’s as x in polynomial N[x]. Let’s run through a quick

example. Let G be the group the symmetries of a regular hexagon including reflections and

rotations. Label the corners clockwise as 1,2,3,4,5,6. Then we can write out the expression

of ζg.
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g α1 α2 α3 α4 α5 α6 ζg

(1)(2)(3)(4)(5)(6) 6 0 0 0 0 0 x6
1

(123456) 0 0 0 0 0 1 x6

(135)(246) 0 0 2 0 0 0 x2
3

(14)(25)(36) 0 3 0 0 0 0 x3
2

(153)(264) 0 0 2 0 0 0 x2
3

(165432) 0 0 0 0 0 1 x6

(12)(36)(45) 0 3 0 0 0 0 x3
2

(14)(23)(56) 0 3 0 0 0 0 x3
2

(16)(25)(34) 0 3 0 0 0 0 x3
2

(1)(4)(26)(35) 2 2 0 0 0 0 x2
1x

2
2

(2)(5)(13)(46) 2 2 0 0 0 0 x2
1x

2
2

(3)(6)(15)(24) 2 2 0 0 0 0 x2
1x

2
2

If we take the formal sum of ζg for all g ∈ G and divide by the order of the group, we

obtain the cycle index of the group of permutations:

ζG(x1, x2, ..., xn) =
1

|G|
∑
g∈G

ζg(x1, x2, ..., xn).

Write the symmetries of the hexagon in our example in cycle index from the table:

1

12
(x6

1 + 4x2
2 + 3x2

1x
2
2 + 2x3 + 2x6)

Notice that the ‘coefficients’ sum up to |G| because we have we have |G| numbers of ζg and

we divide |G| out at the end.
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Alternatively, we can write the cycle index of G as the sum of each type of permutation:

ζG(x1, x2, ..., xn) =
1

|G|
∑

c(α1, α2, ..., αn)xα1
1 x

α2
2 · · ·xαn

n ,

where c(α1, α2, ..., αn) is the number of the cycle type in which there are α1 one cycles, α2

two cycles, ..., and αn n cycles.

We now will briefly discuss how to interpret the cycle index of a group. A given term in

the summation will be of the form c ·
∏n

i=1 x
αi
i . This term tells us that there are c elements

of G that are the composition of α1 1-cycles, α2 2-cycles,..., up to αn n-cycles. We know

that the order of the composition of cycles is the least common multiple of the lengths of

the cycles. This means that each of these c elements have order o=lcm(α1, α2, ..., αn). Note

that this does not mean that there are exactly c elements of this order because it is possible

a different term in the cycle index also represents elements of order o.

4 Cyclic and Dihedral Symmetry

Recall that we are interested in finding the number of inequivalant colorings of objects.

To do this, the most common type of symmetry that we would have to consider would be

symmetries of some circular object. Before considering this we have to decide whether we

are going to allow only circular rotations of the object or rotations and reflections of the

object. For example, if we divide a disk into equal sectors (like a sliced pizza) and then

color each sector (the author is hungry and imagines this as adding a single topping to each

slice), then we would not allow reflections (as this would involve flipping over a perfectly

good pizza). On the other hand, if we have a necklace with some equally spaced beads, then
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we would allow for both reflections and rotations (since it is very easy to put on a necklace

“backwards”).

Figure 1: The same colorings applied to a disk and a necklace. The colorings of the disk are

not equivalent since we do not allow for reflections, while the colorings of the necklace are

equivalent.

First we will consider the situation in which reflections are not allowed. We can think

of this as the group of orientation preserving symmetries of a planar n-gon whose vertices

are labeled clockwise 1, 2, ..., n. This will be the group of rotation generated by the rotation

through 2π/n radians. We can think of this generating element as the permutation π =

(123...n). So the group of rotations is the cyclic group of order n generated by π (Cn =

{e, π, π2, ..., πn−1}).

For example consider when n = 8. Then the permutations and the corresponding expres-

sions for ζπi are:
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πi ζπi

e x8
1

(12345678) x8

(1357)(2468) x2
4

(14725856) x8

(15)(26)(37)(48) x4
2

(16385274) x8

(1753)(2864) x2
4

(18765432) x8

So we get that the cycle index is ζC8(x1, ..., x8) = 1
8
(x8

1 + x4
2 + 2x2

4 + 4x8)

We can now prove the following theorem:

Theorem 2. Let Cn by the cyclic group of permutations generated by (12...n). Then for

each divisor d of n, there are φ(d) elements of Cn that are n/d disjoint cycles of length d.

Thus, the cycle index is

ζCn(x1, ..., xn) =
1

n

∑
d|n

φ(d)x
n/d
d

Proof. We know that there are φ(d) elements of order d in Cn. These elements will be of

the form πkn/d where k is co-prime to d. Now we just need to show that these elements of

actually just n/d d-cycles.

Let i = kn/d, and let m be the length of the shortest cycle in πi. Let x be some element

of a m-cycle in πi. Then (πi)m(x) = πim(x) = x.

Now let y be any element of {1, 2, ..., n}. Since y and x are in the same single n-cycle of

π, we know that y = πr(x) for some r. This means that πim(y) = πimπr(x) = πrπim(x) =
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πr(x) = y. So this means that y is in a cycle of length m′ in πi, where m′ divides m. However,

we assumed that m is the length of the smallest cycle in πi, so m′ = m. This means that

every element of {1, 2, ..., n} is in an m-cycle in πi. It follows that there must be n/m of

these m-cycles. Since the order of πi is d, this means that all of these cycles are d-cycles

(m = d). So πkn/d is n/d disjoint d-cycles.

Note that
∑

d|n φ(d) = n. So when calculating the cycle index, if we sum over all d that

divide n and multiply by φ(d) we will effectively be summing over all πi for 1 ≤ i ≤ n (since

ζg is constant for element of the same order). So we conclude that

ζCn(x1, ..., xn) =
1

n

∑
d|n

φ(d)x
n/d
d

Now consider the case we also allow reflections on regular n-gons. The group of symme-

tries of a regular n-gon when reflections are allowed is denoted D2n. It is this way because

(as we will see later) there are 2n elements of this group.

Even n For an even n, there are essentially two different kinds of reflections. First, we

can choose an axis which goes through the mid-point of an edge and the mid-point of the

opposite edge. Let’s look at the reflection when the axis crosses the mid-point of edge 1 n

and edge n′ n′ + 1 with n′ = n/2. Clearly, this reflection, which we call σ, is

(1 n)(2 n−1) · · · (n′ n′+1)

There are n′ = n/2 2-cycles in total in σ.

On the other hand, if we reflect around an axis that crosses a corner, say n, and the
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Figure 2: The first type of reflection (in this case σ) is reflection over the depicted line

corner n′. The reflection σ′ is:

(n)(n′)(2 n)(3 n− 1−1) · · · (n′ n′+1).

Figure 3: The second type of reflection (in this case σ′) is reflection over the depicted line

If we compose σ with π,

σπ = (1 n)(2 n−1) · · · (n′ n′+1)(12 · · ·n) = (n)(n′)(1 n−1)(2 n−2) · · · (n′−1 n′+1) = σ′

and in turn

σ′π = (1 2)(n 3)(n− 1 4) · · · (n′ + 1 n′ + 2) = σπ2

We see that we can have another reflection when we compose one reflection with rotations.

Without repetition, we have n reflections in total, and the alternating pattern of two kinds of
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reflections tells us the numbers of each kind. In general, we have n/2 numbers of reflections

which has an axis on the midpoints of the opposing edges and has n/2 cycles, they are:

σ, σπ2, σπ4, σπ6, ..., σπn−2.

Similarly, we have n/2 numbers of reflections which has an axis on the opposing corners and

has n/2− 1 cycles:

σπ, σπ3, σπ5, σπ7, ..., σπn−1

So finally, we see that the group of symmetries of a regular n-gon when we allow for reflections

is the group D2n =< π, σ >.

Odd n For odd n there is only one kind of reflection, the reflection over a line that connects

a vertex to the midpoint of the opposite edge. In this case we can call the reflection about the

line connecting the midpoint of the edge n 1 to the vertex (n+ 1)/2 σ. If we take σπi then

we get another reflection of this type. So there are n reflections of this type (σ, σπ, ..., σπn−1),

and again D2n =< π, σ >.

Figure 4: The one type of reflection (in this case σ) for odd n
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Cycle Index for Cn and D2n

Theorem 3. The cycle index of D2n is

1

2
ζCn(x1, ..., xn) +

{
1
4

(x
n/2
2 +x

n/2−1
1 ) if n is even

1
2
x1x

(n−1)/2
2 if n is even

Proof. In the case that n is even, the n elements of D2n fall into three categories. First, there

are the n elements of Cn. Next, there are those n/2 reflections about a line connecting the

midpoints of opposite sides, which are of the form σπ2i. Recall that these are n/2 2-cycles,

so we associate with them x
n/2
2 . Finally there are those n/2 refections that connect opposite

vertices, which are of the form σπ2i−1. These fix two points and swap the rest of the points

in pairs so with them we associate x2
1x

n/2−1
2 . Putting this all together, we get that

ζD2n(x1, ..., xn) =
1

2n

(∑
d|n

φ(d)x
n/d
d +

n

2
(x

n/2
2 + x

n/2−1
1 )

)
=

1

2
ζCn +

1

4
(x

n/2
2 + x2

1 + x
n/2−1
2 )

In the case that n is odd there are only two types of elements. There are those elements

of Cn and there are those n reflections about a line connecting a vertex and its opposite face.

These reflections fix one point and the rest of the n-1 points are swapped in pairs, so we

associate with these x1x
(n−1)/2
2 . Just like above, we put this together to get that

ζD2n(x1, ..., xn) =
1

2
ζCn(x1, ..., x2) +

1

2
x1x

(n−1)/2
2

5 The Number of Inequivalent Colorings

After developing the tools, we are finally ready to attack the coloring problem in a general

sense. Again, we are interested in the distinguishable coloring. For example, if we rotate
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or flip a circular string of evenly spread out black and white beads, we do not consider a

new color pattern is produced. As usual, we define G to be a group of permutations which

acts on the point set X of n elements. Let K be a set of r colors. A coloring is a function

X → K that assigns each point in X a color in K. Let Ω be the set of colorings of X. Since

each point of X has r choices of color, we have rn colorings in Ω.

In the case of the colored beads, the permutations include rotating and flipping. Notice

that with a specific coloring of the circular string, we can see that rotating or flipping the

coloring gives as a new coloring. But the new coloring can also be treated as the previous

coloring after a rotation or a flip of the beads.

In general, given a coloring ω ∈ Ω, we define the “action of g on ω”, ĝ(ω), as:

(ĝ(ω))(x) = ω(g(x))

for every x ∈ X We should give a check that such set Ĝ = {ĝ} forms a group.

Identity: Take e the permutation that fixes all x. Then there is ê ∈ Ĝ such that

(ê(ω))(x) = ω(e(x)) = ω(x).

ê fixes the coloring for all ω.

Closure: For ĝ1, ĝ2 ∈ Ĝ, let

(ĝ1(ω))(x) = ω(g1(x))

(ĝ2(ω))(x) = ω(g2(x))

we act the composition on x and ω

(ĝ1ĝ2(ω))(x) = (ĝ1(ω))(g2(x)) = ω(g1g2(x))
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Since g1g2 ∈ G, we conclude ĝ1ĝ2 ∈ Ĝ.

Inverse: Take any ĝ such that

(ĝ(ω))(x) = ω(g(x)).

There is an inverse ĝ−1

(ĝ−1(ω))(x) = ω(g−1(x)).

Use what we discovered previously

((ĝ−1ĝ)(ω))(x) = ω(g−1g(x)) = ω(x) = ω(gg−1(x)) = ((ĝĝ−1)(ω))(x)

Associativity: Take ĝ1, ĝ2, ĝ3 ∈ Ĝ,

(ĝ1(ω))(x) = ω(g1(x))

(ĝ2(ω))(x) = ω(g2(x))

(ĝ3(ω))(x) = ω(g3(x))

We have

(((ĝ1ĝ2)ĝ3)(ω))(x) = ω((g1g2)g3(x)) = ω(g1(g2g3(x))) = ((ĝ1(ĝ2ĝ3)(ω))(x)

using the associativity of G.

Therefore, Ĝ is a group of permutations of Ω.

Furthermore, there is an isomorphism ψ : G → Ĝ by ψ(g) = ĝ. Assume ψ(g1) = ĝ1 =

ĝ2 = ψ(g2), then

(ĝ1(ω))(x) = (ĝ2(ω))(x)⇒ ω(g1(x)) = ω(g2(x))

is true for any ω and x. When it is not the trivial case, consider ω′ which colors some x′

one color and others a different color. The coloring forces g1(x′) = g2(x′). Since we can find
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such coloring ω′ for each x, g1 = g2 is in fact true for any x. Meanwhile, the injectivity is

satisfied by the construction.

Homormorpism is also obvious. For g1, g2 ∈ G and ĝ1, ĝ2 ∈ Ĝ,

(φ(g1)φ(g2)w)(x) = (ĝ1ĝ2(ω))(x) = (ĝ1(ω))(g2(x)) = ω(g1g2(x)) = (φ(g1g2)w)(x).

Now, observe that if for some ĝ ∈ Ĝ, ĝω = ω′, the two colorings ω, ω′ are indistinguishable.

This means that two colorings are indistinguishable if they are in the same orbit of Ω under

Ĝ. Next theorem follows from this fact.

Theorem 4. If G is a group of permutations of X, and ζG(x1, ..., xn) is its cycle index, then

the number of inequivalent colorings of X with r colors available is

ζG(r, r, ..., r)

Proof. Let F (ĝ) is the set of colorings ω ∈ Ω such that ĝω = ω. Since Ω is a finite set, we

can identity it with the set {1, 2, ..., rn} Recall from our discussion of Burnside’s Counting

Theorem that |F (Ĝ)| = χ(ĝ). Suppose that ĝ(ω) = ω, ω ∈ F (ĝ). Pick (...xyz...) some cycle

of g.

ω(y) = ω(g(x)) = ĝ(ω)(x) = ω(x).

x and y are assigned with the same coloring. Repeat the argument for ω(z) and so on. Also,

we can apply the argument to any cycle. We can then conclude that all the elements in the

same cycle are assigned with the same color. Say g is the composition of k disjoing cycles and

we want to find the number of indistinguishable colorings of X under g. Since all elements

of the same cycle must be the same color, there are r choice of coloring for each cycle. The
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number of colorings is rk. k = α1 + α2 + · · ·+ αn, so we have the relation

|F (ĝ)| = rk = rα1+α2+···+αn

Thus

F (ĝ)| = ζg(r, r, ..., r)

by the definition of ζ.

The useful isomorphism tells us that |Ĝ| = |G|. By Burnside’s Counting Theorem, we

have the number of orbits is

1

|Ĝ|

∑
ĝ∈Ĝ

χ(ĝ) =
1

ˆ|G|

∑
ĝ∈Ĝ

[F (ĝ)| = 1

|G|
∑
g∈G

ζg(r, r, ..., r) = ζG(r, r.., r)

5.1 Inequivalent Colorings of a Tetrahedron

We now return to the original motivating problem: to find a formula for the number of

inequivalent colorings of a tetrahedron with r colors. But first we will show that coloring

the faces of a tetrahedron is equivalent to coloring the vertices of a tetrahedron.

To understand this imagine making a “new” tetrahedron by placing a vertex at the center

of every face of the “old” tetrahedron. If we color the faces of the old tetrahedron, then

we are coloring the vertices of the new one. So every coloring of the faces of a tetrahedron

corresponds to (bijectively) to a coloring of the verities of a tetrahedron. Thus, the number of

inequivalent ways to color the vertices of a tetrahedron is exactly the number of inequivalent

ways to color the faces of a tetrahedron.

Now we must find the group of permutations G that represents the orientation preserving

symmetries of the vertices of a tetrahedron. We can label the vertices 1,2,3,4 in any way
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and now we are looking for a subgroup of S4. Since the order of a subgroup must divide

the order of the group, |G| = 1, 2, 3, 4, 6, 12, or 24. There are 8 “obvious” symmetries of

the tetrahedron: rotation by 120 or 240 degrees about the axes that connect a vertex to

the center of the opposite face. These are all of the eight 3-cycles in S4. Composing these

three cycles will give all of the 3 elements of S4 that are two disjoint two cycles. Along with

the identity, we have now found 12 elements of G, so |G| = 12 or 24. Since there are many

permutations that are not in G (for example (12)), we know that |G| 6= 24 and thus the 12

elements that we have found are all of G.

Now we can note that this group is actually A4 (which is the only order 12 subgroup of

S4). Now we are nearly done. The cycle index of A4 (as calculated in an earlier exercise) is

ζA4(x1, x2, x3, x4) = 1
12

(x4
1 + 3x2

2 + 8x1x3)

By Theorem 3, the formula for the number of inequivalent colorings of a tetrahedron

with r colors is:

1

12
(r4 + 11r2)
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