
Lattice Based Cryptography and Learning With

Errors

Ani Nadiga

2019

1 Why Lattice Based Cryptography?

At a high level, all cryptographic schemes use a problem that is “difficult”
to solve in order to manipulate information. Specifically, an encryption scheme
encrypts a message in such a way that decrypting the message requires solving a
difficult instance of a problem. RSA, the most common form of encryption, uses
the difficulty of factoring large integers to encrypt information. Lattice based
cryptographic schemes base their security on the difficulty of certain problems
regarding lattices. Lattice based schemes offer three major advantages over
currently used schemes:

1. They are secure against attacks from quantum adversaries

2. They are just as secure in the worst and average case

3. The only known fully homomorphic encryption schemes are lattice based

Each of these properties is more rigorously defined and discussed below.

Post Quantum Cryptography The solution to a general class of problems
will be an algorithm that will find an answer to each of the problems in that
class. The measure of how long an algorithm takes is called its complexity, and
if its complexity is a polynomial function of its inputs we call it efficient. If all
of the known algorithms to solve a class of problems are inefficient, then we say
that the problem is difficult or computationally infeasible.

Algorithms can be either classical or quantum. As the names imply, a clas-
sical algorithm is one that could be executed using a classical computer, and a
quantum algorithm would require a quantum computer to be executed. Classical
computers, which store information using 0-1 bits, are ubiquitous and fairly well
understood. Quantum computers, on the other hand, store information using
quantum-bits that can be any value between 0 and 1. There are certain problems
that are difficult to solve using classical computers, meaning that any known
classical algorithm for that problem takes a long (super-polynomial) amount of
time (or resources) to complete. There appear to be some problems that are

1

difficult for classical algorithms but are not for quantum ones. Unfortunately,
this includes almost all of the problems that are used in current cryptography.
(For example, Shor’s quantum algorithm efficiently factors integers.) Thus, if
a viable quantum computer was ever built it would be able to crack all of the
cryptography that we rely on. This raises the challange of building a classical
encryption scheme (i.e. one that classical computers can use) that is resistant
to attacks from quantum adversaries.

Theoretically, building a large quantum computer is possible. Fortunately
for cryptographers (and the population at large), there seem to be a number
of engineering obstacles to constructing large scale quantum computers. While
these computers are being developed, it will be important to discover and imple-
ment new cryptographic schemes that are based on problems that are difficult
for quantum computers as well as classical computers.

The most promising such schemes are latticed based, meaning that they base
their security on the “quantum-difficulty” certain lattice problems. These lattice
problems are generally conjectured to be difficult even for quantum algorithms.
Thus, cryptosystems that use certain lattice problems to manipulate or encrypt
data are secure against attacks from both classical and quantum computers.

Average/Worst Case Reductions For many problems, the difficulty of
solving certain instances of the problem is very different from the difficulty of
solving an “average” instance of that problem. For example, factoring integers
that are the product of two large primes of about the same size is much more
difficult than factoring some random integer. This is why in RSA encryption the
integer that is used to encrypt information is always the product of two large
primes. This variability in difficulty introduces a problem: All cryptosystems in
the real world are based on some specific instance of a problem. If an algorithm
that can efficiently solve this specific instance is discovered, then the security of
the scheme is compromised. Thus the constant worry is that some new result
in mathematics may compromise a specific scheme.

For many classes of lattice problems, it has been shown that the difficulty of
solving the average case of the problem is just as difficult as solving the worst
case of the problem. This is done by first assuming that an algorithm that
efficiently solves the average case of the problem exists, and then showing that
this algorithm can be used as a subroutine in another algorithm to efficiently
solve the worst case of that problem. Thus, if a lattice based scheme is based
on a problem that falls into one of these classes, the worst case hardness of the
problem will guarantee the security of implementation of the scheme, even if
these implementations use an average case version of the problem. This releases
cryptographers from the perpetual worry that their specific instance of a scheme
may be compromised.

This property of lattice problems also lends some credibility to the conjecture
that they are computationally unfeasible even for quantum algorithms. Over
the course of decades, there has not been significant progress in solving even
the average case of these problems, let alone the worst case.

2

Fully Homomorphic Encryption Currently, data can be stored in an en-
crypted format, but must be decrypted before performing any manipulations.
This means that only trusted computers can process sensitive data, which can
becomes a problem if the computational power needed is large. A fully homo-
morphic encryption scheme would allow data to be encrypted in such a way that
it can be processed without being decrypted. This would enable you to encrypt
both your data and some function that you want to be performed on the data,
and then give both to an untrusted computer. The untrusted computer would
return the encrypted result of the function performed on the data, which only
you could decrypt. The computer, however, would not know anything about the
data, the function it effectively performed, or the result of the function on the
data! More concretely, suppose that two numbers a and b have homomorphic
encryptions Enc(a) and Enc(b). Then given only Enc(a) and Enc(b) one can
find Enc(a + b) and Enc(a · b) (with out knowing either a or b). This magical
sounding idea has only been implemented using certain lattice based schemes.

Outline

In this paper we will discuss the merits and short comings of lattice based
cryptography. We begin with some background on lattices and lattice problems.
Then we will discuss the Learning With Errors (LWE) problem. The LWE
problem has been shown to be as hard as certain lattice problems. Most “lattice
based” schemes actually use LWE or some variant of LWE instead of lattices
directly. However, since breaking the cryptosystem would require solving the
LWE problem efficiently, the fact that LWE is as hard as certain lattice problems
will assure the security of the scheme. In the next section we will present
simple a public key cryptosystems based on LWE. Finally we will present a fully
homomorphic encryption scheme based on LWE. We finish with a discussion of
the state of lattice based cryptography as a whole.

2 Lattices and Lattice Problems

2.1 What is a Lattice

The idea of a lattice is very intuitive. The mental image that you may have of
a repeating pattern of points is an accurate depiction of a 2-dimensional lattice.
More formally, a lattice is a discrete additive subgroup of Rn. A basis of a lattice
is a set of vectors in the lattice such that any lattice vector can be written as a
linear combination of the basis vectors.

Obviously, we can only visualize lattices up to 3 dimensions, but the concept
of a lattice generalizes to higher dimensions. For the lattice problems that are
discussed below, the dimension of the lattice will be large, often in the hundreds.

3

Figure 1: A 2-dimensional lattice and a set of two vectors that form a basis

2.2 The Many Lattice Problems

Although there are many lattice problems, almost all of the ones relevant to
cryptography have something to do with the shortest vector of that lattice. The
simplest one is the Shortest Vector Problem (SVP). As its name implies, the
SVP is to find the shortest vector of a lattice given some arbitrary basis of
the lattice. This may at first glance seem simple. However, the fact that we
are given an arbitrary basis for the lattice and not a “nice” one will make this
problem difficult. A good basis would be one with short basis vectors that are
“as orthogonal as possible”. On the other hand, a “bad” basis may have long
vectors that point in almost the same direction.

Figure 2: A “good” basis and a ”bad” basis

If we tried to solve the Shortest Vector Problem using the basis given on
the left, it seems easy. If we imagine being given the basis on the right, this

4

problems seems much more difficult. We can note that there are few “good”
bases, while there are (infinitely) many bad ones. Thus, if we are given an
arbitrary basis, with overwhelming probability the shortest vector will not only
not be a basis vector, it will also not even be close to a basis vector! In general,
the SVP seems difficult in high dimensions with arbitrary basis.

A variant of this problem is called GapSVPβ . Informally, the GapSVPβ
problem is to decide if the shortest vector of a lattice is “long” or “short”
(relative to β). More formally, an algorithm must decide, given a basis of a
lattice, if the shortest vector in the lattice has norm less than 1 or greater
than β. In more symbolic terms, if we have a lattice L with shortest vector of
length λ(L), then given a basis B of L, the GapSVPβ problem is to decide if
λ(L) ≤ 1 or if λ(L) > β. If neither case is true then the algorithm is allowed
to return anything. Like with SVP, the “quality” of the basis will clearly affect
the difficulty of solving the GapSVPβ problem.

2.3 The Quantum Computational Complexity of Lattice
Problems

Obviously, one would hope that there is a proof lattice problems are difficult
for both classical and quantum algorithms. However, as Regev states, the best
evidence for the quantum difficulty of these lattice problems is ”that there are
no known quantum algorithms for lattice problems that outperform classical
algorithms, even though this is probably one of the most important open ques-
tions in the field of quantum computing.” [1]This may initially seem like an
unconvincing argument. However, current cryptography is based on similar as-
sumptions about integer factoring; there are no proofs about the existence or
non-existence of an algorithm to efficiently factor arbitrary integers. However,
the fact that the efforts of decades of mathematics has yielded no such algorithm
would seemingly indicate that no such algorithm exists.

3 The Learning With Errors Problem

Before discussing the Learning With Errors problem, we will describe a much
simpler problem that is analogous. If you are given the numbers 20,500,790,40,70
and asked what they all have in common, the answer seems simple; they are all
multiples of ten. On the other hand, if you are given 11,40,651,49,560, then the
pattern may be less obvious. The answer here is that they are all multiples of
10 with either -1,0, or 1 added. At a high level, the LWE problem is similar;
there is a secret vector that is multiplied (through the dot product) by many
other vectors and then some small error is added. The problem is to find the
the secret vector.

5

3.1 Problem Definition

The Learning With Errors problem is parameterized by some positive integer
modulus q and some error distribution χ over the ring Znq . Suppose that there
is some “secret vector” s ∈ Znq that is sampled uniformly randomly from Znq .
Then pick many ai uniformly randomly from Znq and ei ← χ. For each ai and
ei, define bi = s · ai + ei. Then make the pairs (ai, bi). The LWEq,χ problem is
to figure out s given the many pairs.

Figure 3: A depiction of the LWE problem (note that one does not have access
to the information on the right side of the equations, they only have the value
of bi

Technically, this is called the search LWE problem, since the problem is to
“search” for the secret given the many pairs. There is different variant of this
problem called the decision LWE problem. The decision LWE problem is to
decide, given many pairs, if they are of the LWE “form” or if they are just
totally random. More formally, if one is given many pairs ((a)i, bi) and an error
distribution χ over Znq , the decision LWE problem is to decide if there exists
some s ∈ Znq such that every bi = ai · s + ei for ei ← χ.

1

3.2 Lattice Problem to LWE reduction

Not all instances of the search LWE problem are computationally infeasable.
For instance, if χ is always 0, then one can simply find s through Gaussian
elimination. However, it has been shown that for certain constraints on the
parameters, the seach LWE problem is quantum and clasically “difficult”.

In his paper, Regev establishes the computational infeasiblity of the search
LWE problem by showing that if there exists and algorithm to efficiently solve
the search LWE problem, then that algorithm can be used to solve the GapSVP
problem. More precicely, he shows a quantum algorithm to solve GapSVP that
contains an algorithm that solves search LWE as a subroutine. The complexity
of GapSVP algorithm depends on the complexity of the LWE algorithm that it

1The fact that the search LWE problem is computationally infeasible for quantum comput-
ers may be surprising for those who are familiar with the Bernstien-Vazarani Problem, and the
associated quantum algorithm that can efficiently solve it. If we set q = 2 then LWE samples
are essentially samples of the Berstien-Vazarani type but with a small amount of error.

6

Figure 4: A deptiction of the decision LWE problem

uses. If the LWE algorithm is efficient then the GapSVP algorithm will be as
well. Thus, if GapSVP is quantum computationally infeasible, then there must
not exist an efficient algorithm (quantum or classical) for solving the search
LWE problem.

In the paper, the reduction from the lattice problem to the search LWE
problem is not simple. First, Regev shows that if one can efficiently solve the
search LWE problem, then one can efficiently sample the discrete Gaussian
distribution with certain parameters. The n-dimensional discrete Gaussian dis-
tribution is the discrete analogue of the continuous n-dimensional Gaussian.
This reduction makes use of a quantum algorithm. Then Regev shows that if
one can efficiently sample the discrete Guassian distribution, then one can solve
the GapSVP problem efficiently. Thus, being able to efficiently solve the search
LWE problem would allow one to efficiently solve the GapSVP problem.

3.3 Search Decision Equivalence

The decision LWE problem is more= useful for cryptographic applications.
Therefore, we are more interested in the computational infeasablility of the
decision LWE problem than that of the search LWE problem. An interesting
property of these problems, however, is that the decision problem is at least as
hard as the search problem. Regev shows this be showing that if one has an
algorithm that can solve the decision LWE problem, then that algorithm can be
used to solve the search LWE problem (which was proved to be computationally
infeasible) [1].

He starts by assuming that there is some algorithm that can efficiently dif-

7

ferentiate between LWE type samples and uniformly random samples (i.e. an
algorithm that can efficiently love the decision LWE problem). He uses this
algorithm to find s, coordinate by coordinate. To find the first coordinate s1,
there are q possible choices (because s ∈ Znq). So one can run through each of
these possible values. Let us “guess” that s1 = k. Now, given any LWE sample
(a, b = a · s + e), we can note that if we add l to the first coordinate of a then

b will increase by s1 · l. If our guess k is correct, then (a + (
l
0
...
0

), b + k · l) will

be a “proper” LWE sample. If our guess for k is wrong then it will not be. We
can now pass this modified sample to the efficient decision LWE algorithm to
learn if it is a “proper” LWE sample or not. Thus we can find the value of s1
by running through the possible values of k, and we can repeat this for each
coordinate of s

3.4 Average Case/Worst Case Reduction

Many times, proofs of security will rely on worst case assumptions, rather than
average case ones. This means that if the worst case is actually very unlikely
and the average case is much easier, the security of the cryptosystem can be
compromised. However, for the LWE problems. Regev shows that with in
certain constraints on the parameters, the worst case difficulty of the problem is
no more than that of the average case. Essentially, he shows an algorithm that,
given an algorithm that can solve the average case LWE problems efficiently, can
“amplify the success” to efficiently solve LWE problems in the worst case. This
method essentially takes the average of many runs of the average case algorithm
to guess solutions to the worst case LWE problem.

Figure 5: A visualization of the parameters a problem is difficult. On the left
is the situation for which the parameters that make the average case difficult
are different from the parameters for the worst case. On the right, the compu-
tational difficulty of the average and worst case are the same.

8

3.5 Why LWE is good for cryptography

There are a number of properties of the decision LWE problem that make it
particularly useful for cryptographic applications. Each of these properties have
already been discussed, but not in the context of cryptography. The first prop-
erty is that the LWE problems seem to be computationally infeasable for even
quantum computers. This means that a cryptosystem based on LWE could
be run on classical computers, but could be safe from attacks from quantum
adversaries.

The second property is the average/worst case computational complexity of
the LWE problems. For the problems that are used for current cryptography,
the average and worset case instances of a problem are not equally difficult.
Thus, the perpetual worry is that some way will be discovered to solve the
specific instance of the problem that is currently being used. On the other
hand, with in certain constraints, the LWE problems are as hard in the average
case as they are in the worst case. This means that if one finds a way to solve
certain intsances of the problem then they can solve all of them. Thus, given
that LWE problems generally seem to be difficult, one can confidently pick a
specific instance of an LWE problem to base a crytosystem on.

The final benefit of the LWE problems is that they have some kind of natural
algebraic structure. We can componenent-wise add LWE samples or we can
take their tensor products. This will be useful when trying to implement fully
homomorphic encryption. Recall that a fully homomorphic encryption scheme
is one such that given the encryptions of two numbers, Enc(a) and Enc(b), one
can find Enc(a+ b) and Enc(a · b) (with out knowing a or b). We will see later
that fully homomorphic encryption schemes based on LWE problems “inherit”
some kind of algebraic structure from the space of LWE samples.

9

4 LWE based Cryptosystems

In this section we present an LWE based public key cryptosystem. A public
key cryptosystem has a secret key and a public key. Any one can use the public
key to encrypt a message, but only someone with the secret key can decrypt a
message.

Figure 6: A public key cryptosystem: Alice decides on a secret key and keeps
it to herself. Then she uses the secret key to generate a public key. Bob
uses this public key to encrypt his message. Alice can use her secret key to
decrypt the message. The adversary Eve can not figure out what the message is
using publicly available knowledge (the public key and the encryption of Bob’s
message).

4.1 Review of LWE

LWE problems are parameterized by the error distribution χ and the secret
vector s (since s ∈ Znq this implicitly sets n and q). We define the LWE dis-
tribution As,χ as the distribution of samples (a, b = a · s + e), where a is a
uniformly random vector of Znq and e is sampled from χ.

4.2 Building up to the Cryptosystem

Note that b−a ·s = e. This leads to a possible way to encrypt a one bit message
x. Let Alice’s secret key be s and the public key be some sample from As,χ,
(a, b). Then, to encrypt x ∈ {0, 1}, Bob modifies the public key to (a′, b′) =
(a, b+ b q2cx). To decrypt the message, Alice calculates b′ − a′ · s = e+ b q2cx. If
this value is closer to 0 than to q

2 , then she concludes that x = 0, and otherwise
she concludes that x = 1. As long as the error term e is small enough (< q/4)
then this will clearly work. This can be guaranteed with high probability by
choosing a χ with a low standard deviation.

10

Now we pose two questions. The first is whether, given publicly available
information, one can find the secret key. The public key is simply an LWE
sample, and the secret key is the secret vector of the sample. Thus the task of
finding the secret key given the public key is simply the search LWE problem.
Since the search LWE problem is computationally infeasible, we conclude that
this is impossible.

The second question is whether an adversary can observe the encryption of
some messages and then figure out the messages. Unfortunately, for this scheme
the answer is yes. If Eve intercepts an encryption that Bob sends out then she
can simply compare it to the public key. If the encryption is the same as the
public key, then clearly Bob’s message is a 0, and if it is different then it must
be a 1.

To deal with this, we could imagine a slightly different scheme. Alice’s secret
key would still be some secret vector s. The public key would now be a large
set of m LWE samples with secret s. Then to encrypt, Bob simply picks one
of the samples at random and then encrypts as before. However, Eve can still
break this system easily. She can simply see if an encryption that Bob releases
is in the public key or not. If it is in the public key the the message is most
likely 0, and if it is not then the message is most likely 1. For a final solution
we want many possible ciphertexts which do not “pair up” with the elements of
the public key.

4.3 The Scheme

The final scheme will be as before, except Bob will use some random subset
of the LWE samples in the public key. Let the m LWE samples in the public
key be indexed by (ai, bi). The way in which Bob will use random subsets of
the m LWE samples in the public key is as follows. He will pick a random bit
string S ∈ {0, 1}m, and create the new “sample” (a, b) = (

∑
i∈S ai,

∑
i∈S bi).

This new “sample” is simply a subset sum of the m original samples. Then Bob
uses this new sample to encrypt his message the same way he did in the first
iteration of the scheme (he outputs the ciphertext (a,b+b q2c)x). Alice decrypts
as before, but now b − c · s =

∑
i∈S ei + bp2cx. Thus, the condition for correct

decryption is that the sum of many ei must be small.
Informally, it makes sense that the scheme is secure because there is no clear

way to “match” a given encryption to an element of the ciphertext. A more
rigorous discussion of security that relies on properies of subset sums will follow
later.
The scheme is described more formally below:

Let n be the security parameter of the cryptosystem. This means that the
higher n is, the more computationally difficult it will be to crack the cryp-
tosystem. We pick q, the integer modulus, to be some prime number between
n2 and 2n2. We pick m, the number of LWE samples in the public key, to be
(1+ε)(n+1) log q, where ε > 0 is some arbitrary constant. The error distribution
χ is taken to be a discrete Gaussian distribution over Znq whose standard devi-
ation is α(n) = o(1/(

√
nlogn). All of the operations that follow are performed

11

mod q.

• Private Key: Choose some uniformly random vector s ∈ Znq for the
secret key.

• Public Key: For i = 1, ...,m pick ai uniformly randomly from Znq and
ei from χ. Then we let bi = ai · s + ei. The public key is the set of LWE
samples (ai, bi)

m
i=1

• Encryption: Pick a random S ∈ {0, 1}n. Then let (a, b) = (
∑
i∈S ai,

∑
i∈S bi).

To encrypt a bit x ∈ {0, 1}, we let the encryption be (a′, b′) = (a, b+b q2cx)

• Decryption: To decrypt a pair (a′, b′), consider b′ − a′ · s. If this value
is closer to 0 than b q2c, the decryption is 0, otherwise it is 1.

4.4 Correctness of the Scheme

Obviously, we would like for the decyption of a ciphertext to be the actual
message that was sent. Recall that to decrypt we “round” the quantity b −
a · s =

∑
i∈S ei + bq/2c. In order for this rounding to work correctly, we need

the quantity
∑
i∈S ei to be very small. Regev shows that for our choice of

parameters, the probability that the sum of errors drawn from χ is greater than
q/2 negligible. Thus, the probability that the subset sum of the errors will
change the way that the rounding works is negligible as well, and the scheme
will almost always work correctly.

4.5 Security of the Scheme

In order for the scheme to be secure, an adversary should not be able to dis-
tinguish encryptions of 0 and encryptions of 1. Regev shows that if there is
some polynomial time algorithm that can differentiate between encryptions of 0
and 1, then there is some algorithm that can distinguish between LWE samples
and uniformly random samples with a significant chance of success. Since we
assume that decision LWE is computationally infeasible, this would imply that
there does not exist a polynomial time algorithm that distinguishes between
encryptions of 0 and 1.

4.6 Key Size

In order for a cryptosystem to be viable in the real world, the key sizes must
be. We see that the size of the public key is O(mn log q). We define Õ to be
the complexity ignoring all logarithmic factors. Thus, given the definition of m,
the size of the public key is Õ(n2). This is a fairly large key size, as the security
factor will often be in the many hundreds.

One idea to reduce the key size is to distribute to first half of the public
key, a1, ...,am, before hand. Then if any one wanted to set up a public key
system they would simply need to pick a secret and generate the bi that is

12

associated with each ai. In a real world setting we could imagine that the
vectors ai are included in the security software that is distributed to users, and
then users simply have to generate the last half of the public key in order to
set up a public key cryptosystem. This reduces the key size to Õ(n), which is a
substantial improvement.

5 Fully Homomorphic Encryption from LWE

Recall that a fully homomorphic encryption scheme is a scheme such that given
the encryption of two numbers a and b, one can find the encryption of a + b
or ab, with out knowing a or b. The methods that define a fully homomor-
phic encryption scheme are the same as those that define a public key system
(SecretKeyGen, PublicKeyGen, Enc, Dec), in addition to the methods Add and
Mult, which describe how to homomorphically add and multiply ciphertexts.

We will first present the methods SecretKeyGen, PublicKeyGen, and Enc.
Then we will describe Add and Mult. Finally, we will describe Dec.

In order to make computation and implementation easier, the scheme is
presenting using slightly different notations from the public key cryptosystem
presented above. Specifically, it will allow us to describe the methods in terms
of matrix and vector operations. However, it works in much the same way.
One of the key differences, however, is that the secret is drawn from the error
distribution χ rather than uniformly randomly. Another distinction is that the
error that is added is always even. This means that it does not change the
parity of what it is added to. Decryption in this scheme works by looking at
the parity of something related to the ciphertext rather than the magnitude of
it, like was done in the public key system.

• SecretKeyGen: Draw a secret vector s′ from χn. Then make the secret
key s = (1, s′) = (1, s′[1], ..., s′[n].

• PublicKeyGen: Uniformly randomly sample a matrix A′ from ZN×nq . The
N rows of this matrix are analogous to the ai that were used in the public
key system. Then we sample a vector e← χN , and calculate b = A′s′+2e.
This vector is analogous to the bi from the previous scheme. The public
key is the matrix A whose first column is b and whose subsequent columns
are the columns pf −A′. Thus, each row of A is an LWE sample with an
even error.

• Enc: To encrypt a message m ∈ {0, 1}, we first set m = (m, 0, ..., 0) ∈
Zn+1
q . Then we pick a random bit string r ∈ ZN2 . This is like the S

that was chosen in the public key system. We output the ciphertext
c = m + AT r. Just like in the public key system, this is like taking a
random subset sum of the LWE samples in the public key and adding the
message to the b part of the sum.

• Dec: Output [[〈c, s〉]q]2. Just like in the previous scheme, we first take

13

〈c, s〈. This will leave us with the sum of some random even errors plus
the message

5.0.1 Homomorphic Addition

If we have two ciphertexts c1, c2 which encrypt messages m1, m2, then the sum
c1 + c2 will be a valid encryption of m1 +m2

5.0.2 Homomorphic Multiplication

Given two ciphertexts c1, c2 which encrypt messages m1, m2 under the secret
key s, we want to find a ciphertext for m1m2. We can do this by taking the
tensor product of the two ciphertexts, c1 ⊗ c2. However, the secret for this
ciphertext will no longer be s, it will be s ⊗ s. This means that in order to
decrypt the ciphertext we will compute [[〈c1 ⊗ c2, s⊗ s〉]q]2.

5.1 Problems with the Scheme

5.1.1 Key and Ciphertext Growth

This ciphertext has two coordinates. Informally, we can view the first as some
padding of a message (that makes it impossible to read), and the second as
some information which, in combination with the secret, allows us to ”unpad”
the message.

When we multiply two ciphertexts they go from being decryptable under the
secret s to being decryptable under s⊗ s. Intuitively, what is happening is that
when we tensor the two ciphertexts, the amount of information that is needed
for decryption increases.

Figure 7: Caption

In this scheme, homomorphically multiplying two ciphertexts that are en-
crypted under a secret s of dimension n , will result in a ciphertext that is
encrypted under s⊗ s, which has dimension n2. Then, as we homomorphically
multiply this chiphertext with other ciphertexts, the size of the ciphertext and
the size of the secret key grow exponentially. This makes the scheme as it his
impractical for real world use.

14

5.1.2 Noise Growth

The noise associated with a ciphertext c (under the secret key s) is |〈c, s〉|. If
this value exceeds q/2 then there will be decryption error.*

If two ciphertexts have noise at most B, their sum will have noise at most
2B. This means that the noise grows about linearly under addition.

On the other hand, the product of the ciphertexts will have noise B2 (under
the new secret key s ⊗ s). This means that the noise grows exponentially as a
function of the number of multiplications. This means that we can do at most
SOME ASYMPTOTIC NOTATION BULLSHIT HERE.

5.2 Solution to Problems

In this section we will present an algorithm that will allow us to switch the
secret key that is needed to decrypt ciphertexts which will function with out
actually decrypting the ciphertext. More formally, if we have a ciphertext c that
encrypts a message m under the secret key s, we will define a transformation
that would allow us to transform c to c′, which encrypts m under a new secret
key s′.

Remember that if we take the product of ciphertexts, we get some new
ciphertext c2⊗c1 that encrypts m1 ·m2 under the key s⊗s. With the algorithm
described above, we can transform this to a new ciphertext that is an encryption
of m1 ·m2 under the original secret key s. This addresses the issue of growing
key size.

5.2.1 Key Switching

The algorithm that is described below can effectively switch between any two
secret keys. However, we will describe it in the context of switching between
s⊗ s and s, which will allow us to deal with the issue of key length growth. The
cost will be a small increase in the noise of the cipertext that is output. The
key switching will happen in two parts. First a matrix will be generated using
s⊗ s and s. Then we wil simple multiply the old ciphertext by this matrix and
it will give us the new ciphertext. We will see that the cost of this operation
will be a small additive increase in the noise of the ciphertext.

5.3 Circular Security

Although we have proved that it is safe to encrypt a random message using the
cryptosytem, there is one potential issue with the key switching algorithm. We
can essentially view the matrix that was generated to enable key switching an
an encryption of s⊗ s under the secret key s. However, we only know that the
cryptosystem is secure for random messages. It has not been proven that it
is possible to safely encrypt messages that relate to the secret. The ability to
encrypt the secret of a cryptosytem securely is called circular security.

For this cryptosystem, there is no guarantee of circular security. On the
other hand, there is no proof that it is impossible to encrypt the secret safely.

15

So we are left with a choice: we can either assume circular security in which
case the scheme as described is completely functional, or we can choose to not
assume circular security. If we do not assume circular security then we need to
find a new way to address the key size growth.

What if instead of switching from s ⊗ s to s, we intead switched to s′ for
some different s′? Then we would avoid the issue of circular security. In fact,
we could make a full sequence of secret keys s1, ..., sk. Then, after the first
homomorphic encryption is carried out, the secret key will be s1 ⊗ s1. We can
key switch from this to s2 securely. Thus we can continue down the ”ladder”
of secrets until we have reached the last one. The size of this ladder will be
determined by the amount that the noise grows with each multiplication and
by the noise growth of each key switch. Specifically, we must ensure that the
total noise is low enough to allow for proper decryption.

References

[1] Oded Regev. On lattices, learning with errors, random linear codes, and
cryptography. J. ACM, 56(6):34:1–34:40, September 2009.

[2] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices and
learning with errors over rings. J. ACM, 60(6):43:1–43:35, November 2013.

[3] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (leveled) fully
homomorphic encryption without bootstrapping. ACM Trans. Comput.
Theory, 6(3):13:1–13:36, July 2014.

16

