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Operator Algebras Fall 2019

0 Introduction

These are the notes based on the Operator Algebras course taught in Fall of 2019 by Dr
Joachim Zacharias. There was no single text for this course.

If you find any errors please tell me (or email me at asnadiga@gmail.com).

0.1 Notation

In this course all spaces that we consider will be normed linear spaces over C.

0.2 Background

Definition 0.1
A norm on a space X is a function || · || : X → [0,∞) such that for all x, y ∈ X and
λ ∈ C

1. ||x+ y|| ≤ |||x||+ ||y||,
2. ||λx|| = |λ| · ||x||
3. ||x|| = 0 if and only if x = 0.

Definition 0.2
A normed space X is a Banach space if it is complete with respect to its norm
(meaning that every sequence that is Cauchy with respect to the norm converges
with respect to the norm to some value in X).

Example 0.3
The following are Banach spaces:

1. Any finite dimensional normed linear space.
2. `∞ = {(an) ∈ CN | (an) bounded} with norm ||(an)|| = sup{|ai| | i ∈ N}.
3. C(Ω) = {f : Ω→ C | f is continuous}, with the norm ||f ||∞ = sup{|f(t)| | t ∈

Ω}, where Ω is a compact topological space.
4. For X and Y , consider B(X,Y ) = {T : X → Y | ||T || < ∞} where ||T || =

sup{||Tx|| | x ∈ X, ||x|| < 1}. This is called the set of bounded linear operators
from X to Y .

5. B(X,C) is called the dual of X.

Definition 0.4
Inner product spaces carry the norm ||x|| = 〈x, x〉1/2. Any inner product space that
is complete with respect to this norm is called a Hilbert space.

Clearly all Hilbert spaces are Banach spaces as well.

Example 0.5
The following are Hilbert spaces:

1. Cn with the standard inner product.
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2. `2 = {(an) ∈ CN |
∑
|ai|2 <∞.

Definition 0.6
An algebra is a linear space X with an associative bilinear multiplication, meaning
that:

1. (x+ λy)z = xz + λyz,
2. x x(y + λz) = xy + λxz, and
3. (xy)z=x(yz)

for all x, y, z ∈ X and λ ∈ C.

An algebra is a normed algebra is X is normed, and is a Banach algebra is X is a Banach
space.

Definition 0.7
A unit in an algebra A is a unique element, denoted 1A such that 1Ax = x1A = x for
all x ∈ A. If A has a unit then A is a unital algebra.

Example 0.8
The following are algebras:

1. C(Ω) with pointwise multiplication is a unital commutative algebra (when Ω is
compact.

2. B(X) = B(X,X) with multiplication given by composition is a unital normed
algebra. B(X) is a Banach algebra if and only if X is a Banach space. B(X) is
not commutative if and only if Dim(X) > 1. Every Banach Algebra is contained
in some B(X).

3. (2) when X is a Hilbert space.

Examples (1) and (3) also carry an involution.

Definition 0.9
An involution on an algebra A is a map ∗ : A → A such that for all x, y ∈ A and
λ, µ ∈ C,

1. * is antilinear: (λx+ µy)∗ = λx∗ + µy∗,
2. * is antimultiplicative: (xy)∗ = y∗x∗, and
3. * is involutive: (x∗)∗ = x.

On C(Ω) the involution is given by f∗(t) = f(t). On B(H) the involution of T is the adjoint
of T , which is the unique operator satisfying that 〈T ∗x, y〉 = 〈x, Ty〉 for all x, y ∈ H.

Definition 0.10
A Banach algebra is a C∗-algebra if it carries an invultion * such that ||xx∗|| = ||x||2.

Both C(Ω) and B(H) are C∗-algebras.
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1 Banach Algebras

Example 1.1
Given a Banach algebra A, define the Banach Algebra A = A⊕C with addition being
component wise, multiplication such that (a, λ)(b, µ) = (ab + λb + µa, λµ), and the
norm ||(a, λ)|| = ||a|| + |λ|. Then A is a unital Banach algebra with unit (0, 1). An
involution on A extends to A through (a, λ)∗ = (a∗, λ).

Example 1.2
Let G be a discrete group. Then `1(G) = {f : G→ C |

∑
g∈G |f(g) <∞} with norm

||f ||1 =
∑
g∈G |f(g)| is a Banach space. Then if we defined multiplication through

(fg)(s) =
∑
g∈G f(t)g(t−1s) we have a Banach Algebra.

Definition 1.3
Given an algebra A, we denote the set of invertible elements of A by G(A)

Proposition 1.4
Let A be a Banach algebra with unit 1A. Then the following are true.

1. For x ∈ A such that ||x|| < 1, 1 − x is invertible. More generally if ||x|| < λ
then λ− x is invertible.

2. G(A) is open and the inverse map is continuous.
3. G(A) is a topological group, meaning that the inverse and multiplication func-

tions are continuous.

Proof. 1. We can construct the inverse of 1− x,
∑∞
n=0 x

n. Then (1− x)
∑n=1A

n]=0 .

2. Let x ∈ G(A) to show that G(A) is open, we will show that the open ball of
radius ||x−1||−1 is contained in G(A). So suppose that y ∈ A such that ||x− y|| <
||x−1||−1. Then we can write y = x − (x − y) = x(1 − x−1(x − y)). Then since
||x−1(x−y)|| ≤ ||x−1|| · ||x−y|| < 1, the element 1−x−1(x−y) is invertible. Since
x is also invertible y = x(1−x−1(x− y)) is invertible. By applying the formula for
the inverse from part (1), to 1− x−1(x− y) we can show continuity.

3. We already know that multiplication is continuous in A, and we have shown that
inversese are continuous.

Definition 1.5
A continuous path in a topological space Ω connecting ω0 ∈ Ω to ω1 ∈ Ω is a
continuous mapping p : [0, 1] → Ω such that p(0) = ω0 and p(1) = ω1. A topogical
space Ω is path connected if any two point can be joined by a continuous path.

Definition 1.6
G0(A) is the set of elements in G(A) that can be connected to 1A by a path in G(A).
More formally, for all x ∈ G0(A), there is a continuous p : [0, 1] → G(A) such that
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p(0) = x and p(1) = 1A.

Proposition 1.7
G0(A) is

1. connected,
2. open, and
3. normal in G(A).

Proof. 1. Since every element of G0(A) is path connected to 1A, we can construct a
path between any two points.

2. We will show that for any x ∈ G0(A), the open ball of radius ||x−1||−1 about
x is contained in G0(A). Let p(t) = x + th. This is a path connecting x to
x + h. Since G0(A) is path connected, it will suffice to show that this entire
path is contained in G(A), because then we can construct a path from x + h to
1A that stays in G(A). Note that for any t, p(t) = x + th = x(1 − (−tx−1h).
|| − tx−1h|| ≤ |t| · ||x−1|| · ||h|| < 1 · ||x−1|| · ||x−1||−1 = 1. Thus by the previous
proposition, p(t) is invertible.

3. Let x ∈ G0(A). We want to show that for any a ∈ G(A), axa−1 ∈ G0(A).
x ∈ G0(A) implies that there is some path p connecting x to 1A. Then ap(t)a−1 is
a path connecting axa−1 to 1A that stays in G(A), meaning that axa−1 ∈ G0(A).

Proposition 1.8
An open subgroup of a topological group is closed.

Proof. Let G be a topological group and let H < G be an open subgroup. Then if the
(possibly finite) set {g0 = 1G, g1, ...} is a set of unique coset representatives of H in G,
then we have that G = ∪giH. We also know that since multiplication is continuous in a
topological group, H open implies that giH is open as well. Thus G \H = ∪i 6=0giH is
open, meaning that H is closed.

This proposition implies that G(A)/G0(A) is always a discrete group.

Definition 1.9
Let A be an algebra with unit 1. Then for each x ∈ A we defined the spectrum of x
as

σ(x) = {λ ∈ C | λ− x /∈ G(A)}.

Proposition 1.10
Let A be a Banach algebra then for any x ∈ B σ(x) 6= ∅

Proof. This has something to do with holomorphic functions and stuff. I really cant
work with that.
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Proposition 1.11
Let A be a Banach algebra with a unit element. Then for every x ∈ A, the following
are true:

1. σ(x) is closed, and
2. σ(x) ⊆ {λ ∈ C | |λ| < ||x||}.

Proof. 1. The complement of σ(x), C \ σ(x) is the preimage of G(A) under the map
λ 7→ λ − x. This map is continuous and G(A) is open so this preimage is open.
This σ(x) is closed.

2. Let λ ∈ σ(x), and suppose for contradiction that |λ| > ||x||. Then we know that
λ− x is invertible which contradicts the assumption that λ ∈ σ(x)

Proposition 1.12
Let A be a unital algebra. If x, y ∈ A, then σ(xy) ∪ {0} = σ(yx) ∪ {0}.

Proof. Let λ ∈ C such that λ 6= 0. We want to show that λ− xy ∈ G(A) ⇐⇒ λ− yx ∈
G(A). By symmetry we only need to prove one direction. We can also assume with out
loss of generality that λ = 1 because if it is not we can scale everything that follows
appropriately.
λ − xy ∈ G(A) means that 1 − xy is invertible. This means that −(1 − xy) = (xy − 1)
is invertible, so there exists some u ∈ A such that u(xy − 1) = (xy − 1)u = 1A. Let
w = 1− yux. Then we have that

(1− yx)w = 1− yx− yux+ yxyux = 1− yx− y(1− xy)ux = 1− yx− (−y1Ax) = 1A

and

w(1− yx) = 1− yx− yux+ yuxyx = 1− yx− yu(1− xy)x = 1− yx− (−y1Ax) = 1A

. Thus w is the inverse of (1− yx); 1− yx ∈ G(A).

Proposition 1.13
Let B be a Banach algebra with unit 1B , and let A ⊂ B be a closed subalgebra such
that 1B ∈ A. Then for all x ∈ A, the following are true:

1. σB(x) ⊆ σA(x), and
2. δ(σA(x)) ⊆ δ(σB(s)).

Proof. 1. Since G(A) ⊆ G(B), there may be inverses in B that are not in A. Thus
there may be values of λ that are in σA(x) that may not be in in σB(x). On the
other hand if an element is not invertible in B then it is not in A either.

2. Let λ ∈ δ(σA(x)). We want to show that λ ∈ δ(σB(x)). Since λ is a boundary
point point there is a sequence (λn) in σA(x)C that converges to λ. Now assume
for contradiction that λ /∈ δ(σB(x)). Then λ /∈ σB(x), meaning that (λ − x)−1

exists in B. Since addition and inverses are continuous, the sequence (λn1B−x)−1

converges to (λ1B − x)−1. Since λn /∈ σA(x) for every n, the element (λn − x)−1

exists in A for ever n. Since A is closed, the limit of this sequence, (λ− x)−1 is in
A. This contradicts the assumption that λ ∈ σA(x).
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This means that in the situation described above, if σA(x) ⊆ R, then σA(x) = σB(x).

Definition 1.14
Let A be a Banach algebra with unit 1A. Then for x ∈ A, the spectral radius of x is
defined as

r(x) := max{|λ| | λ ∈ σ(x)}.

Since σ(x) is closed and bounded, {|λ| | λ ∈ σ(x)} is closed in bounded in R, meaning that
the maximum of this set is well defined.

Theorem 1.15
Let A be a Banach algebra with unit 1A, then for all x ∈ A, r(x) = limn ||xn||1/n.

Proof. This also has to do with holomorphic functions and I dont understand it.

Theorem 1.16
Let A be a Banach algebra in which ever non zero element is invertible. Then A ≈ C.

Proof. Let x ∈ A, we know that σ(a) 6= ∅, so let λ ∈ σ(a), meaning that λ − x is not
invertible. Since all of the non-zero elements of A are invertible, λ−x = 0, which means
that every x ∈ A is a scalar multiple of the identity element, which gives an obvious
isomorphism to C.

2 Ideals and Quotients

Definition 2.1
Given a Banach algebra A, a subalgebra (closed under addition and multiplication)
I is an ideal if AI ⊆ I and IA ⊆ I.

An algebra is simple if the only ideals are the full algebra and the empty set.

We can also note that if A is a unital algebra then any non-trivial ideal can not contain 1A
(because then A ⊆ AI). More generally, any non-trivial ideal can not contain any invertible
elements.

Definition 2.2
If A is an algebra with I an ideal, then we can form the quotient algebra A/I =
{a + I | a ∈ A}. The operations are as follows: (a + I) + (b + I) = (a + b) + I, and
(a+ I)(b+ I) = ab+ I.

Proposition 2.3
If A is a Banach algebra and I E A is an ideal then the following are true.

1. The closure of I, I is also an ideal.
2. ||1A + z|| ≥ 1 for all z ∈ I (unless A = I).
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3. Further suppose that A is unital. If I is a proper ideal of A, then I is a proper
ideal of A.

Proof. Let A be a unital Banach algebra, and let I E A.
1. Let x ∈ I. Then there is some sequence (xn) in I that converges to x. Since I

is an ideal, for any a ∈ A, the sequence (axn) is in I, and by the continuity of
multiplication, this sequence converges to ax. Thus ax ∈ I for any x ∈ I and
a ∈ A.

2. Suppose that for some z ∈ I, ||1A + z|| < 1. Then we know that q− (1A + z) = −z
is invertible in A, which means that z is invertible as well. This means that I = A.

3. Suppose that I 6= A, but I = A. Then we know that −1A ∈ I, so there is a
sequence (xn) in I that converges to −1A. This means that the sequence (1 + xn)
converges to 0A. By (2), we know that ||1A+xn|| ≥ 1, but this makes it impossible
for (1A + xn) to converge to 0A. Thus we conclude that I 6= A.

2.1 Maximal Ideals

Definition 2.4
Given an algebra A and an ideal I E A, we say that I is a maximal ideal if J E A is
proper ideal that contains I implies that J = I

Proposition 2.5
Any maximal ideal of a (i think unital) Banach algebra is closed.

Proof. Let A be a Banach algebra and I E A be a maximal ideal. Then we know that I
is also a proper ideal, and it contains I. Thus I = I.

Proposition 2.6
If A is a Banach algebra, then I E A is a maximal ideal if and only if A/I is simple.

Proof. We will show a correspondence between ideals of A and ideals of A/I, which
will be used to prove the proposition. First start with an ideal of A, J , then we can
construct the ideal of A/I, K = {j + I | j ∈ J}. Similarly, given an ideal of A/I, K, we
can construct the ideal J = ∪a+I∈Ka+ I. (see correspondence theorem for rings).
Now suppose that I is a maximal ideal in A. Then suppose that K is an ideal in A/I.
Then the corresponding ideal J clearly contains I. This means that J is either I or A.
If J = I then K is the empty ideal, and if J = A, then K = A/I. Thus A/I is simple.
Now suppose that A/I is simple. Then let J be any ideal that contains I. The corre-
sponding ideal K in A/I must be either the empty ideal or all of A/I. This would imply
that J is either I or A, which means that I is maximal.

Proposition 2.7
If A is an algebra then every proper ideal of A is contained in a maximal subideal of
A.
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Proof. The set of proper ideals is a partially ordered set with comparison given my
inclusion. We also know that for any fully ordered subset, there is a maximal element.
Thus we can apply Zorn’s lemma to prove the proposition.

Proposition 2.8
Let A be a unital Banach algebra. Then if I E A is a maximal ideal, A/I ≈ C.

Proof. Suppose that A is a unital Banach algebra with I E A a maximal ideal. Then
A/I is a simple unital Banach algebra (the proof of this actually comes later). Now
let b ∈ A/I be some non-invertible element. Then clearly (A/I)b is an ideal, and since
1A/I /∈ (A/I)b, it is a proper ideal. This means that (A/I)b is the trivial ideal, which
means that b = 0A/I . Thus all non-zero elements of A/I are invertible. We have seen
that this means that A/I ≈ C

2.2 Quotients

Proposition 2.9
If A is a Banach space (or algebra) and I E A is a closed ideal, then we can equip
A/I with the quotient norm

||a+ I|| = inf
z∈I
||a+ z||.

This norm makes A/I into a Banach space (or algebra).

Proof. FINISH ME

We can note that π : A→ A/I is a contraction as ||π(a)|| ≤ ||a||.

Proposition 2.10 (Factorization Lemma)
Let φ : A→ B be a homomorphism of Banach algebras. Then there is a factorization
of φ = φ̇◦π, where π : A→ A/Ker(φ) is the ususal quotient map and φ̇ : A/Ker(φ)→
B. Further, we have that ||φ̇|| = ||φ||.

Proof. First we need to show that there exists some φ̇ that satisfies the proposition, then
we will show that it is unique. Finally, we will show that ||φ̇|| = ||φ||.
Let φ̇1(a + Ker(φ) = φ(a). To show that this is well defined note that if a + I = b + I,
then a = b+ x for some x ∈ Ker(φ). Thus φ̇1(a+ I) = φ(a) = φ(a) + φ(x) = φ(a+ x) =
φ(b) = φ̇1(b+ Ker(φ)). Clearly φ̇1 ◦ π = φ.
Now suppose that there is another function φ̇ : A/I → B such that φ̇2 ◦ π = φ. Then
since π is surjective, φ̇1 and φ̇2 are equal on all values of A/I, meaning that they are
equal.
Further, ||φ|| = ||φ̇ ◦ π|| ≤ ||φ̇|| · ||π|| ≤ ||φ̇|| since π is a contraction. On the other hand
||φ̇(x + Ker(φ))|| = ||φ(x)|| = ||φ(x + z)|| ≤ ||φ|| · ||x + z|| for all z ∈ Ker(φ). Thus
||φ̇(x + I)|| ≤ ||φ|| infz∈Ker(φ) ||x + z|| = ||φ|| · ||x + Ker(φ)||. Now use x + I (maybe

technically some (xn + I) approaching x+ I) such that ||φ̇(x+ I)|| = ||φ̇|| · ||x+ I||. This
shows that ||φ̇|| ≤ ||φ||. Thus ||φ̇|| = ||φ||.
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3 Characters and the Gelfand Transformation

Definition 3.1
A character on a Banach algebra A is a non-zero homomorphism ω : A→ C.

Definition 3.2
The set of all characters on a Banach algebra A is called the Gelfand Spectrum,
denoted sp(A).

Lemma 3.3
Every character ω on a Banach algebra A is continuous. In fact, ||ω|| ≤ 1, and if A
is unital ||ω|| = 1, with ω(1A) = 1.

Proof. In order to show that ω is continuous we need to show that its norm is bounded.
The in fact part of the lemma implies this so we will just prove that part.
Suppose for contradiction that for some character ω on a Banach algebra A, ||ω|| > 1
(possibly infinite). Then choose some x ∈ A such that ||x|| ≤ 1 and ω(x) = 1. We can
find such an x, because since the norm of ω is greater than 1, we can find some x′ such that
||x′|| < 1 and ||ω(x′)|| > 1. We can scale x′ by the appropriate amount to get x. Then
we define y =

∑∞
n=1 x

n (this series converges because the series of norms converges by
the assumption that ||x|| < 1). Then y = x+xy. So ω(y) = ω(x)+ω(x)ω(y) = 1 +ω(y).
This gives the contradiction that 0 = 1.
Now suppose that A is unital. Then find and x ∈ A such that ω(x) 6= 0. Then we get
that ω(x) = ω(1Ax) = ω(1A)ω(x), so ω(1A) = 1. This gives that ||ω|| ≥ 1, which means
that they are equal by the previous part of the lemma.

Example 3.4 (L)
t A = C(Ω) for some compact Ω. For any t ∈ Ω, define ω:C(Ω)→ C by ωt(f) = f(t).
Actually, it turns out that all characters on C(Ω) are of this form (proof to come
later in course).

Here if Gelfand’s idea:
Assumme that A is a unital Banach algebra, and the note that

sp(A) = {ω : A→ C | ω is a non-zero homomorphism}
⊆ {f : A→ C | f is a linear functional and ||f || ≤ 1}
= the closed unit ball in the dual of A, A∗

A∗ carries the weak *-topology, which is the topology generated by Ua1,··· ,an,ε1,···εn(f) =
{f : A→ C | ||g|| ≤ ∞ and |g(ai)− f(ai)| < εi}

This topology corresponds to a topology of point wise convergence, where ((fn)→ fn if and
only if (fn(x))→ f(x) for all x ∈ A. With this in mind, we define the Gelfand Transform.
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Definition 3.5 (The Gelfand Transform)
The Gelfand Transform of a Banach algebra A is the function ·̂ : A→ C(sp(A)) given
by x 7→ x̂ such that x̂(ω) = ω(x)

Theorem 3.6: The Gelfand Representation Theorem
Let A be a unital commutative Banach algebra. Then the following are true:

1. The Gelfand transformation is a continuous homomorphic function, and
||x̂||∞ = r(x) ≤ ||x||.

2. The image of ·̂, Â, separates points in sp(A), meaning that if ω1, ω2 ∈ sp(A)
are not equal, then there is some x ∈ A such that x̂(ω1) 6= x̂(ω2).

3. For any x ∈ A, σA(x) = σC(sp(A))(x̂) = Im(x̂).

Proof. 1. Clearly the Gelfand transform is homomorphic, so all we need to show is
that it is a bounded operator. That ||x̂||∞ = r(x) follows easily from part 3, and
since r(x) ≤ ||x|| by theorem 1.15, we can conclude tat ||̂·|| ≤ 1.

2. Obvious
3. It suffices to show that x ∈ A is invertible if and only if x̂ is invertible. First

suppose that x ∈ A is invertible. Then for any character ω ∈ sp(A), ω(xx−1) =
ω(x)ω(x)−1 = 1. Thus ω(x) 6= 0 (since 0 is not invertible). Thus x̂ is no where 0,
and this is equivalent to it being invertible (since we can construct its inverse).
Now suppose that x ∈ A is not invertible. We want to find some character ω such
that x̂(ω) = ω(x) = 0, since this corresponds to x̂ not being invertible. Since x is
not invertible, Ax is a proper ideal in A. We know that there is a maximal ideal
M E A such that Ax E M . In proposition 2.8 we have shown that A/M ∼= C.
Thus we can treat the quotient map π : A → A/M as a character. Since x ∈ M
x̂(π) = π(x) = 0, meaning that x̂ is not invertible.

Definition 3.7
A Banach algebra A is semisimple if the Gelfand transform is injective

It turns out that A is semisimple if and only if the radical of A, rad(A) = {a ∈ A | r(x) = 0}
is trivial (only contains 0). Otherwise A/rad(A) is semisimple.

It also turns out that all C∗-algebras are semisimple.

4 Commutative C∗-algebras and Functional Calculus

Even though the definition of an invoution does not require ||x|| = ||x∗|| this will always be
true in a C∗-algebra.

Definition 4.1

12
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For a unital Banach algebra A, we define

ex :=

∞∑
n=0

1

n!
xn.

In order for this to be a valid definition we need that this series will always converge. Since
the series of the norms converges and A is complete with respect to the norm, the series will
converge.

In exercises, we have shwon that if xy = yx then ex+y = exey.

Definition 4.2
If A and B are involutive algebras, then a *-homomorphism is a homomorphism
φ : A→ B such that φ(a∗) = φ(a)∗ for all a ∈ A.

The following theorem will be used to prove the 1st Gelfand-Naimark Theorem:

Theorem 4.3: Stone-Weirstrauss Theorem
If C ⊆ C(Ω) is a *-subalgebra for a compact Ω such that 1C(Ω) ∈ C and C seperates

points in Ω, then the closure C = C(Ω).

We do not prove this theorem.

Theorem 4.4: 1st Gelfand–Naimark Theorem
If A is a commutative unital C∗-algebra, then the Gelfand transform is a isometric
*-isomorphism between A and C(sp(A)) (with norm || · ||∞ and involution given by
f∗ = f)..

In this theorem, multiplication in C(sp(A)) is pointwise, the norm
Proof. The proof will proceed in three steps. First we will show that the Gelfand trans-
form is a *-homomorphism. Next, we will show that it is an isomorphism, and finally we
will show that it is an isometry.

1. We already know that the Gelfand transform is a homomorphism, so we only need
to show that for any x ∈ A, x̂∗ = x̂∗ = x̂. To do this we will first show that if
x ∈ A is self adjoint then for any ω ∈ sp(A), ω(x) ∈ R, which implies that x̂∗ = x̂.
In an exercise we showed that any general element in A can be written as x1 + ix2

where x1 and x2 are self adjoint, which can show that ·̂ is a *-homomorphism.
Let x ∈ A be self adjoint. For any t ∈ R, define ut = eitx. Then u−1

t = e−itx = u−t.
Using the definition of exponentiation, we can note that

u∗t =

∞∑
n=0

1

n!
(it)x∗ =

∞∑
n=0

1

n!
(−it)x = e−itx = u−t.

Then utu
∗
t = 1A, and ||ut||2 = ||u∗tut|| = 1, so ||ut|| = ||u∗t || = 1. We

also know that ω(u∗tut) = 1, so |ω(u∗t )| · |ω(ut)| = 1. Since ω is a contrac-
tion (by lemma 3.3) this means that |ω(ut)| = |ω(u∗t )| = 1. We can write

13
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ω(ut) = ω(
∑
n = 0∞ (it)n)

n! xn=
∑
n = 0∞ (it)n)

n! ω(x)n = eitω(x). Then since ω(ut) =

eitRe(ω(x))e−tIm(ω(x)) = 1 for all t, it must be the case that Im(ω(x)) = 0 (if it
were not then as t→∞, ω(ut) grows unboundedly). Thus ω(x) ∈ R.

2. The image of the Gelfand transform Â is a *-subalgebra of C(sp(A)) such that

1C(sp(A)) ∈ Â and Â seperates points in C(sp(A)) by theorem 3.6. Thus by the

Stone-Weirstrauss Theorem, Â = C(sp(A)). On the other hand, we know that A is
closed with respect to the norm and the Gelfand transform is an isometry (proved

in the next part), Â must be closed, meaning that Â = Â = C(sp(A)). Thus the
Gelfand transform of A is surjective.
To show injectivity, let x, y ∈ A be distinct elements, then ||x − y|| > 0. In the
next part we show that the Gelfand transform of A is an isometry, which means
that |ω(x− y)| = |ω(x)− ω(y)| > 0. which implies that ω(x) 6= ω(y).

3. In exercise we have shown that if x∗x = xx∗ (x is normal) then ||x̂||∞ = r(x) = ||x||.
Since A is commutative, all elements are normal, so ·̂ is isometric *-isomorphism.

Corollary 4.5
If A is a unital C∗-algebra and x ∈ A is self adjoint, then σ(x) ∈ R.

Proof. Define B = {a11A + a2x+ · · ·+ anxn mod n ∈ N, ai ∈ C}. Then B is a unital
commutative C∗-algebra. Then by the 1st Gelfand Naimark Theorem, ·̂ : B → C(sp(B))
is an isometric *-isomorphism. Following the first part of the proof of the theorem, we
can see that x̂ is real valued. By The Gelfand Representation Theorem, we have that
σB(x) = x̂(sp(B) ⊆ R. We know that σA(x) ⊆ σB(X) ⊆ R by proposition 1.13. This
proposition also tells us that δσB(x) ⊆ δσA(x). But since σB(x) ⊆ R all of its elemebts
are boundary points and thus σA(x) = σB(X) ⊆ R.

Lemma 4.6
In the setting from the above proof x̂ : sp(B)→ σ(x) is a homeomorphism.

Proof. We start by showing that x̂ is a bijection. We already know that it is surjective.
To see injectivity, let ω, χ ∈ sp(B) such that x̂(ω) = x̂(χ). Then for any polynomial p,
ω(p(x)) = χ(p(x)). Referring back to the definition of B, we can see that ω = χ on a
dense subset of B, and by continuity, this implies that ω = χ.

We can form the C∗-algebra generated by 1 and x, B := C∗(1, x) (B will be of the form
that is presented in the proof of the lemma). This is a unital commutative C∗-algebra
so we can apply the theorem to get that x 7→ x̂ is an isomorphism showing that B =
C∗(1, x) ∼= C(sp(B)). Using the lemma we get that sp(B) ∼= σ(x), so we now know that
C∗(1, x) ∼= C(C∗(1, x)).

So we now have the following *-isomorphism between C(σ(x)) and C(sp(C∗(1, x)): f 7→ f◦x̂.
As an exercise, it can be shown that the identity function maps to x̂ and that the uniformly
1 function maps to the uniformly 1 function. Thus we get the following theorem:

14
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Theorem 4.7: Continuous Functional Calculus for Self Adjoint Elements
et A bd a unital C∗-algebra, and let x ∈ A be a normal element. Then there exists
an isometric *-isomorphism Φx : C(σ(x))→ A. wuth the following properties:

1. Φx(IdC(σ(x)) = x, and
2. Φx(1C(σ(x)) = 1A.

If f ∈ C(σ(x)), then Φx(f) can be denoted by f(x). This can be thought of as a
function of x inside of A.

The intuitive idea of functional calculus: If we are given a polynomial or any function
that can be expressed as a power series it is quite clear how to apply that function to any
algebra. The goal of functional calculus is to formally extend this idea to any continuous
function.

Note in particular that for any normal x, if p is a polynomial, then Φx(p) = p(x) in the
intuitive way. It can also be shown using the power series expansion that if f : R→ RR by
y 7→ ey, then f(x) = Φx(f) = ex with the definition of the exponential given above.

5 Representations of C∗-algebras

Definition 5.1
Let A be a C∗-algebra. A representation of A over a Hilbert space H is a *-
homomorphism π : A→ B(H). rep(A,H) = {π : A→ B(H) | π is a representation}.

Example 5.2

If A = C[0, 1] and H = L2[0, 1], where 〈ξ, η〉 =
∫ 1

0
ξ(t)η(t)dt. Then we can define

π : A→ H by (π(f)ξ)(t) = f(t)ξ(t).

In general we only consider non-degenerate representations, i.e. π such that π(A)H =
span{π(a)ξ | a ∈ A, ξ ∈ H} = H. If this fails then we can simply restrict the representation
to the subspace π(A)H to make it non-degenerate (restricting means only applying π(a) to
elements of the subspace, so the restriction is from A to the set of bounded linear operators
on the subspace).

Definition 5.3
Given a C∗-algebra A, Hilbert space H, and a representation π : A→ B(H), K ⊆ H
is an invariant subspace of π if π(a)K ⊆ K for all a ∈ A.

If K is an invariant subspace of π then the restriction π|K : A → B(K) where π|K(a) =
π(a)|K is a representation of A over K.

Example 5.4
If we fix some ξ ∈ H then the space K = π(A)ξ ⊆ H is an invariant subspace.

15
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Definition 5.5
Given finitely many representations πi ∈ rep(A,Hi) for 1 ≤ i ≤ n, we can form
the direct sum of representations ⊕1≤i≤nπi : A → ⊕1≤i≤nHi, where for any a ∈ A,
a 7→ ⊕1≤i≤nπi(a), such that ⊕1≤i≤nπi(a)(ξ1, ..., ξn) = (πi(ξi))1≤i≤n.

In the infinite case, more care must be taken. Let I be an infinite index set. Then define
⊕i∈IHi = {(ξi)i∈I | ξi 6= 0 for finitely many i, and i∈I ||ξi||2 ≤ ∞}. Then ⊕i∈Iπi : A →
⊕i∈IHi, where for any a ∈ A, a 7→ ⊕i∈Iπi(a), such that ⊕i∈Iπi(a)(ξi) = (πi(ξi))i∈I for
(ξi) ∈ ⊕i∈IHi.

Although it is not relevant here, it is interesting to know some following things about
representations. A representation if said to be irreducible if its only invariant subspaces
are the full space and the empty set. For any representation, H = Ker(π) ⊕ Im(π). Any
representation can be written as the direct sum of irreducible representations .

Definition 5.6
A representation π ∈ rep(A,H) is said to be faithful if it is inejctive.

Lemma 5.7
Suppose that A is a unital C∗-algebra, and for some fixed x ∈ A, g ∈ C(σ(x)). Now
suppose that π is some *-homomorphism with domain A such that ||π|| < 1. Then
π(g(x)) = g(π(x)).

Proof. The lemma is clearly true in the case that g is some polynomial (because of
the homomorphism of π). By the Wierstrauss approximation theorem, we know that
polynomials are dense in C(σ(x)). Since ||π|| < 1, this means that we can extend the
result from polynomials to general continuous functions.

Theorem 5.8
If A is a unital C∗-algebra and π ∈ rep(A,H), then ||π|| ≤ 1. Moreover, if π is
faithful, then ||π|| = 1 and π is an isometry.

Note that this theorem is true for general *-homomorphisms, not just representations.
Proof. Assume that π is non-degenerate. (If it is then simply restrict to the appropriate
subspace to make it non-degenerate. We claim that σB(H)(π(a)) ⊆ σA(a). This is
equivalent to C \ σA(a) ⊆ C \ σB(H)(π(a)). Then suppose λ ∈ C \ σA(a). Then (λ1A −
a)−1 ∈ A exists, and π((λ1A−a)−1) = (λπ(1A)−π(a))−1 = (λ1B(H)−a)−1, so λ1B(H)−a
is invertible and λ ∈ σB(H)(π(a)). This proves the claim.
Now, for any a ∈ A the element a∗a is self adjoint, and we have that

||a||2 = ||a∗a|| = r(a∗a) = sup{|λ| | λ ∈ σA(a∗a)}
≤ sup{|λ| | λ ∈ σB(H)(π(a))}
= r(π(a∗a)) = ||π(a)∗π(a)|| = ||π(a)||2.

Thus ||a|| ≤ ||π(a)||, and ||π|| ≤ 1.

16



Operator Algebras Fall 2019

For the moreover part of the theorem, suppose that π is injective. We want to show that
||π(a)|| = ||a||. For any a ∈ A, let x = a∗a, and let X = π(x). Claim that ||x|| = ||X||.
If this is true then ||a||2 = ||x|| = ||X|| = ||pi(a)||2, which proves the theorem. Suppose
for contradiction that ||x|| > ||X|| for some a ∈ A where x = a∗a. Then we have
that r(x) = ||x|| < ||X|| = r(X). Thus we have that σB(H)(X) ⊂ σA(x) with proper
containment. Since x and X are self adjoint, their spectrums are subsets of the reals.
Then it is true that we can find some continuous positive function f : σA(x)→ R≥0 such
that f |sigmaB(H)(X) = 0 but f in general is not uniformly 0. Using the previous lemma,
we know that π(f(x)) = f(π(x)). Then f(π(x)) = f(X) = 0B(H). On the other hand,
since f is non zero, f(x) 6= 0, which means that π(f(x)) 6= 0B(H) by injectivity. This
contradicts the result of the lemma. Thus we conclude that π must be an isometry.

6 The GNS Construction

GNS-Gelfand Nairmark Segal
We will build up to a general method for constructing *-representations. The results and
construction below hold for general Banach *-algebras, so it is true specifically for C∗-
algebras.

Definition 6.1 (L)
t A be a Banach *-algebra.

1. y ∈ A us positive if y = x∗x for some x ∈ A.
2. A linear functional ρ : A→ C is positive if ρ(x∗x) ≥ 0 for any x ∈ A.
3. If A is a unital Banach *-algebra and ρ is a positive linear functional such that
ρ(1A) = 1, then we say that ρ is a state.

Example 6.2
1. If A is a commutative C∗-algebra, then we can write A = C(Ω) for some

compact Ω. y ∈ A is positive means that y = x∗x = xx for some x. Thus y is
positive if and only if y ≥ 0.

2. Let ρ : C[0, 1]→ C be defined by ρ(f) =
∫ 1

0
f(t)r(t)dt is positive if and only if

r(t) > 0. ρ is a state if
∫ 1

0
r(t)dt = 1.

A+ denotes the positive elements of A. If x ∈ A+ then we write x ≥ 0. We can also say that
x ≥ y if and only if x− y ≥ 0. (Note that x 6≥ 0 does not mean that x < 0 in this notation
I THINK). This gives us a partial ordering on A. As we showed in the example part 2, in
C(Ω), we have that x ≥ 0 if and only if x = x∗ and σ(x) ⊆ [0,∞). It will turn out that this
is true in general (proof later). Thus if x ∈ A+ we can define x using functional calculus.
S(A) is the set of states on A.

Lemma 6.3
If A is a Banach *-algebra and x ∈ A is self adjoint and ||x|| ≤ 1, then there is a
y ∈ A such that y2 = 1− x and y is self adjoint.

Proof. The proof uses taylor series expansions and holomorphic functional calculus
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Proposition 6.4 (Cauchy-Schwartz Inequality for Positive Linear Function-
als)
Let A be a Banach *-algebra, and let ρ : A → C be a positive linear functional.
Define the sequilinear form [x, y] = ρ(y∗x) Then |[x, y]|2 ≤ [x, x][y, y]. More over,
||ρ|| = ρ(1).

Proof. To prove the first part of the proposition note that the sesquilinear form is almost
an inner product, except that we dont have [x, x] = 0 ⇐⇒ x = 0A. However, you can
still follow your favorite proof of the Cauchy-Schwartz inequality to get the result.
Now we prove that ||ρ|| = ρ(1). Since ρ is positive, we have that ρ(1A) = ρ(1∗A1A) ≥ 0.
The first part of the proof shows that |ρ(x)|2 = |ρ(1∗Ax)|2 ≤ ρ(1)ρ(x∗x). Now we claim
that if||x|| < 1 then ρ(x∗x) ≤ ρ(1). If this is the case then |ρ(x)| ≤ ρ(1A) and |||| ≤ ρ(1A).
On the other hand we obviously have that ρ(1A) ≤ ||ρ||. To prove the claim first not
athat ||x∗x|| = ||x||2 < 1. Then x∗x is self adjoint and we can apply the lemma to find
some y = y∗ ∈ A such that y2 = 1 − x∗x. Then 0 ≤ φ(y2) = ρ(y∗y) = ρ(1A−ρ(x∗x).
This ρ(x∗x) ≤ ρ(1A), which proves the claim and thus the proposition.

Lemma 6.5
Let A be a Banach *-algebra, let ρ : A → C be a positive linear functional, and
letN = {x ∈ A | [x, x] = ρ(x∗x) = 0}. Then N is a closed left-ideal in A, and the the
function 〈x+N, y + n〉 = [x, y] is a well defined inner product on A/N .

Proof. First we show that N is closed. Let (xn) be a sequence in N that has limit x.
Then (x∗nx)→ x∗x and thus (0) = ρ(x∗nx)→ ρ(x∗x), so 0 = ρ(x∗x) and x ∈ N .
Now we show that N is a left ideal. Let x ∈ N and a ∈ A. Then we con-
sider ρ((ax)∗ax) = ρ(x∗a∗ax). By the Cauchy-Schwartz inequality, we have that
|ρ(x∗a∗ax)|2 ≤ ρ(a∗a)ρ((a∗ax)∗(a∗ax)). Since x ∈ N the right hand side is 0. Since
ρ is positive, this means that ρ((ax)∗ax) = 0, so ax ∈ N .
The second assertion breaks into 4 parts:

1. Well defined: Let x1+N = x2+N ∈ A/N and y1+N = y2+N ∈ A/N . We want to
show that 〈x1+N, y+N〉 = 〈x2+N, y2+N〉. We know that for some x, y ∈ N , x2 =
x1+x and y2 = y1+y. Then we have that 〈x2+N, y2+N〉 = [x2, y2] = [x1+x, y1+y]
if we expand this and apply the Cauchy-Schwartz inequality to each of the terms
that we want to cancel, we will find that this simplifies to [x1, y1] = 〈x1+N, y1+N〉.

2. Linear in the first argument: follows easily from the linearity of ρ.
3. Conjugate symmetric: ρ((x + y)∗(x + y)) ∈ R. When we expand this, it implies

that ρ(x∗y) + ρ(y∗x) ∈ R. The only way this can be true for all x, y is if they are
conjugate to each other. Thus the proposed inner product is conjugate symmetric.

4. 〈x + N, x + N〉 = [x, x] ≥ 0 since ρ is positive. Furthermore, 〈x + N, x + N〉 = 0
implies that x ∈ N which means that x+N = 0A/N .
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