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Abstract This project seeks to understand∞-categories (also known as quasi-categories)

as categories in which the notion of equality of both objects and morphisms has been

replaced by isomorphism. To do this, we think of ∞-categories as mathematical struc-

tures with objects, 1-morphisms between objects, 2-morphisms between 1-morphisms, 3-

morphisms between 2-morphisms, and so on. Thus we can consider whether there is an

isomorphism between two n-morphisms, rather than considering if they are equal. We

show that there is a fully faithful functor from the category of small categories to the

category of ∞-categories, which can be used to generalize many important categorical

constructions to the setting of ∞-categories. In addition, we show that the study of a

particular type of ∞-category, called a Kan complex, is equivalent to the study of the

homotopy theory of spaces.
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Chapter 0

Introduction

When introduced to category theory, students are often told to not consider the equality

of the objects, as the structure of the objects of a category does not contribute to the

structure of the category itself. This idea breaks down when we consider Cat, the category

of small categories and functors between them. In order to discern if two morphisms

F,G : C → D in Cat are equal, one must check if they are equal on the objects of C, which

requires considering the equality of objects in D. However, we just asserted that the

equality of objects is unimportant to understanding the structure of D as a category. This

is perplexing as functors are morphisms between categories that preserve structure, but

determining if two functors are equal requires more than just structure of the categories

in question.

One solution would be to just ignore the question of whether or not two functors are

equal. We already have the notion of natural transformations and natural isomorphisms

of functors, and instead of asking if two functors are equal, we could decide to only ever

ask if there is a natural isomorphism from one functor to another. This idea generalizes

to the concept of a (strict) 2-category, which essentially encodes the idea of having ob-

jects, morphisms between objects, and morphisms between morphisms which are called

2-morphisms. (More formally a strict 2-category is a category enriched over Cat.) For

example, Cat can be turned into a 2-category where the objects are small categories, the

morphisms are functors, and the 2-morphisms are natural transformations of functors.

Ignoring the notion of equality of objects has forced us to ignore the equality of morphisms,

and instead only consider isomorphisms between morphisms. However, answering the

6
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question of whether two natural transformations are equal requires considering the equality

of objects of a category. So one could go one level deeper and use the notion of a strict

3-category, and then of a strict 4-category, and continue indefinitely. ∞-categories are

a structure that allow one to consider objects, morphisms of morphisms, morphisms of

morphisms of morphisms, and so on forever. This frees us from ever having to answer the

question of whether two morphisms of degree n are equal, as we can instead ask if there

is an n+ 1 degree isomorphism between them.

Getting rid of the notion of equality introduces many difficulties, but also brings a certain

cleanliness. For example, in the category of groups we have groups that are isomorphic

but not equal. We can get around this issue by constructing the ∞-category of groups in

which we refuse to consider the question of equality, and only ask if two groups (or group

morphisms, morphisms of morphisms, etc.) are isomorphic.

The model for ∞-categories discussed in this project is based on simplicial sets and re-

quires a substantial amount of background, which is the subject of Chapter 1. In Chapter

2, we introduce the nerve functor, which assigns to any category a simplicial set, and the

singular functor which assigns to any topological space a simplicial set. The nerve of a

category and the singular set of a space are both examples of ∞-categories. Since there

is already a notion of isomorphism in topological homotopy theory, namely homotopy,

the singular functor will motivate our definition of isomorphism in an ∞-category, which

we will also call homotopy. Ordinary category theory is undeniably useful, so we want

to generalize constructions from ordinary category theory to the setting of ∞-categories,

where we can not use equality. The nerve functor will be useful in motivating many of

these generalizations. Chapter 3 defines ∞-categories, introduces the concept of homo-

topy and also generalizes many of the notions of ordinary category theory to the context

of ∞-categories. Finally, in Chapter 4, we discuss various types of fibrations and their

application to the study of ∞-categories.



Chapter 1

Background

1.0 Notation

Set Category of sets and functions between sets

Top Category of compactly generated Hausdorff spaces and continuous maps

Cat Category of small categories and functors between small categories

DC Category of functors from C to D

In this paper all of the topological spaces are objects of Top. Similarly, a generic category

is always assumed to be an object of Cat

1.1 The Yoneda Lemma and the Density Theorem

Let C be any small category. For any object A, the functor HomC(−, A) : Cop → Set is the

functor represented by A, which we denote by hA. Given another functor F : Cop → Set,

the set of natural transformations from hA to F is Hom(hA, F ).

Lemma 1.1.0.1 (Yoneda Lemma). For any small category C, object A of C, and functor

F : Cop → Set there exists an isomorphism of sets Hom(hA, F ) ∼= F (A). Moreover, when

both sides are viewed as functors Cop × SetC
op → Set, the isomorphism is natural in both

A and F .

8
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Proof. Define p : Cop × SetC
op → Set as follows.

• For any object (hA, F ), let p(A,F ) = Hom(hA, F ).

• For any morphism (uop, v) : (A,F ) → (B,G), let p(uop, v)(η) = v ◦ η ◦ u, where

η ∈ Hom(hA, F ).

Define q : Cop × SetC
op → Set as follows.

• For any object (A,F ), let p(A,F ) = F (A).

• For any morphism (uop, v) as above, let p(uop, v)(x) = vB(F (uop)(F (A))) where

x ∈ F (A).

For an arbitrary object (A,F ) of Cop × SetC
op

, define ΦA,F : p(A,F ) → q(A,F ) by the

mapping η 7→ ηA(idA). We must show that the collection {ΦA,F }(A,F )∈Ob(Cop×SetCop ) is a

natural transformation from p to q and that for a given pair (A,F ) the morphism ΦA,F is

a bijection.

We will start by showing the second part. We have the following commutative diagram.

Hom(A,A) Hom(X,A)

F (A) F (X)

ηA

f◦

ηX

F (f)

idA f

ηA(idA) ηX(f)

Any natural transformation η ∈ p(A,F ) is uniquely determined by ηA(idA), since

ηX(f) = F (f)(ηA(idA)) for any f ∈ Hom(X,A). Thus ΦA,F is a bijection between natural

transformations from hA to F and elements of F (A).

Now we show that Φ is a natural transformation from p to q. We must show that the

following diagram commutes.
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p(A,F ) = Hom(hA, F ) p(B,G) = Hom(hB, G)

q(A,F ) = F (A) q(B,G) = G(B)

p(uop,v)

ΦA,F ΦB,G

(q∗uop,v)

η v ◦ η ◦ u

ηA(idA) (v◦η◦u)B(idB)
=vB(F (uop)(ηA(idA)))

Since uop = ◦u sends idA ∈ Hom(A,A) to u ∈ Hom(B,A), by the previous argument, we

have that F (uop)(ΦA,F (η)) = F (uop)(ηA(idA)) = ηB(u). This gives

vB(F (uop)(ηA(idA))) = vB(ηB(u)) = vV (ηB(u(idB))), as desired.

The Yoneda Embedding Let y : C → SetC
op

be the functor given by y(A) = hA. The

Yoneda Lemma shows that

Hom(y(A), y(B)) = Hom(hA, y(B))

∼= y(B)(A)

= hB(A)

= HomC(A,B).

Thus y is fully faithful and gives an embedding of C in SetC
op

, called the Yoneda embedding.

1.1.1 The Density Theorem

Let C be a small category. Informally, the density theorem says that any functor Cop → Set

can be realized as a colimit of representable functors.

Theorem 1.1.1.1 (The Density Theorem). Let F : Cop → Set be any functor. Define IF ,

the category of elements of F , to be the category where

• objects are pairs (U, s) where U is an object of C and x ∈ F (U), and

• morphisms (U, x)→ (V, y) correspond to morphisms u : U → V such that

(F (u))(y) = x.

Let p : IF → C be the forgetful functor. Then F is isomorphic to the colimit of the diagram

y ◦ p : IF → SetC
op

.



CHAPTER 1. BACKGROUND 11

For brevity we do not prove the density theorem, but a proof can be found in 6.2.17

of [Lei09].

Specifying an object (U, x) of IF is essentially specifying x ∈ F (U), which is equiv-

alent to specifying the natural transformation Φ−1
U,F (x) from hU to F . By the natu-

rality of Φ, specifying a morphism (U, x) → (V, y) is equivalent to specifying a map

Hom(hV , F ) → Hom(hU , F ) that takes the natural transformation Φ−1
V,F (V, y) to the nat-

ural transformation Φ−1
U,F (U, x). Thus we can equivalently define IF as having objects

that are natural transformations from hU to F for all objects U of C, and morphisms

from η : hU → F to ϕ : hV → F corresponding to maps U → V that take ϕ to η by

precomposition. In this construction we have the forgetful functor p′ that takes a natural

transformation from hU to F to U and the statement of the density theorem is that F is

isomorphic to the colimit of y ◦ p′.

1.2 Geometric Intuition

Before giving the definition of a simplicial set, we start by considering geometric simplicial

complexes. The goal is to gain some intuition for the behavior of simplicial sets.

A geometric n-simplex is a convex set spanned by n+ 1 geometrically independent points,

and any n-element subset is a face. A geometric simplicial complex X is a collection of

geometric simplices of various dimension such that

• every face of every simplex of X is in X, and

• the intersection of any two simplices of X is a face of each simplex.

One can specify a geometric simplicial complex X by starting with a set of vertices and

then specifying which sets of vertices span a simplex of X. we denote a simplex that has

vertices {v1, . . . , vn}, by (v1, . . . , vn). In this case, any subset of {v1, . . . , vn} must also

span a simplex. One can organize X as skeleta X0, X1, . . . where X0 is the collection of

vertices and Xn is all of the n-element subsets of X0 that span a simplex of X.

Example 1.2.0.1. We can give the standard topological n-simplex

|∆n| := {(t0, t1, . . . , tn) ∈ Rn+1 |
∑n

i=0 ti = 1 and ti ≥ 0} the structure of a geometric

simplicial complex. Let X0 = {(1, 0, . . . , 0), (0, 1, . . . , 0), . . . (0, 0, . . . , 1)}. Then for any

k ≤ n, let Xk by the sets k + 1 element subsets of X0.
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Given two geometric simplicial complexes X and Y , if there is a map X0 → Y 0 that

induces an isomorphism Xk → Y k for all integers k ≥ 0, then X and Y are homeomorphic

when considered as spaces. The idea of an abstract simplicial set is to strip away the

geometric data so we are left with a purely combinatorial structure that can describe any

geometric simplicial complex up to homeomorphism.

An abstract simplicial complex X consists of a set X0, called the vertices of X, and for

each integer k > 0 Xk consists of k + 1 element subsets of X0 such that for any integer

j ≤ k any j + 1 element subset of an element of Xk is an element of Xj . We call Xk the

set of abstract k-simplices of X.

We define a face of an abstract n-simplex as any n-element subset. One could create a

geometric simplicial complex from an abstract simplicial complex X of finite dimension by

giving an appropriate map X0 → RN that would take abstract k-simplices to geometric

k-simplices in such a way that the intersection of any two geometric k-simplices is a face

of both of them.

Example 1.2.0.2. Any geometric simplicial complex is an abstract simplicial complex. To

emphasize the lack of geometric information we construct a combinatorial generalization

of the standard topological n-simplex where X0 is any set of n+1 elements, and for k ≤ n,

Xk is the set of k + 1 element subsets of X0.

The lack of an ordering on the vertices make abstract simplicial complexes difficult to work

with. For example, there is no natural ordering of the n+1 faces of an abstract n-simplex.

To address this we move to ordered simplicial complexes.

An ordered simplicial complex is an abstract simplicial complex X along with a total

ordering on X0. Then we can specify k-simplices of X by (k + 1)-tuples (xj0 < xj1 <

· · · < xjk). We define the ith face of such a k-simplex as (xj0 < · · · < x̂ji < · · · < xjn),

the tuple with the ith entry removed. Ordered simplicial complexes give a combinatorial

analouge to a geometric simplicial complex with the additional structure of an ordering

on the vertices and faces of any particular k-simplex.

1.3 The Category ∆

Given an ordered abstract simplicial complex, one is able to give an ordering to the n+ 1

faces of any n-simplex. We want to encode in a categorical way the idea of a simplex
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having ordered faces. For this we will need the following category.

Definition 1.3.0.1. Let ∆ to be the category where

• objects are sets [n] = {0, 1, · · · , n} for each integer n ≥ 0, and

• morphisms are the weakly order preserving functions.

For any partially ordered set I, we can form a category that has objects corresponding

to the elements of I and a morphism i → j when i ≤ j. Weakly order preserving maps

between partially ordered sets are equivalent to functors between the corresponding cat-

egories in the obvious way. Thus we can equivalently define ∆ as the full subcategory of

Cat that is spanned by the categories [n] such that n ≥ 0. In different contexts different

definitions will be more convenient so we use them interchangeably.

Although there are many possible morphisms [n] → [m], for integers n,m ≥ 0, it turns

out that we can express any such morphism as the composition of two types of simple

morphisms. For any 0 ≤ i ≤ n, define di : [n]→ [n+ 1] and si : [n]→ [n− 1] as:

di(k) =


k, if k < i

k + 1, if k ≥ i
and si(k) =


k, if k ≤ i

k − 1, if k > i

These maps are called the coface maps and codegeneracy maps, respectively. The ith coface

maps sends [n] to [n+ 1] in order by skipping i in [n+ 1], while the ith codegeneracy map

sends [n] to [n− 1] by repeating i. There are a number of relations that are easy to verify:

djdi = didj−1 for i < j

sjsi = sisj+1 for i ≤ j

sjdi =


id, if i = j or i=j+1

disj−1, if i < j

di−1sj , if i > j + 1

(1.1)

The coface and codegeneracy maps generate all of the morphisms of ∆, and using the

relations above, one can express any morphism as a composition of coface and codegeneracy

maps.

When considering ∆ as a subcategory of Cat, the coface and codegeneracy maps are defined

in the following way. We depict the category [n] as (0
f1−→ 1

f2−→ · · · fn−→ n). Then
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• di : [n]→ [n+ 1] is defined by di(fk) =


fk, if k < i

fi+1 ◦ fi if k = i

fk+1, if k > i

• si : [n]→ [n− 1] is defined by si(fk) =


fk, if k < i

idk if k = i

fk−1, if k > i

.

As with the original definition of ∆, any morphism in the categorical version ∆ can be

uniquely expressed as a composition of these morphisms.

1.4 Simplicial Sets

Definition 1.4.0.1. A functor ∆op → Set is called a simplicial set.

If X is a simplicial set, the we denote by Xn the image X([n]) and refer to elements of Xn

as n-simplices of X. For any integers 0 ≤ i ≤ n the ith face and degeneracy maps of X,

are defined as dXi = X(di) : Xn+1 → Xn and sXi = X(si) : Xn−1 → Xn, respectively. We

omit the super script when there is no ambiguity regarding which simplicial set is being

considered. For any n-simplex x of X, we refer to di(x) as the ith face of x and si(x) as

the ith degeneracy of x. Since the morphisms di and si generate all of the morphisms of

∆, specifying the face and degeneracy maps as well as the sets Xn is sufficient to uniquely

identify a simplicial set.

The face and degeneracy maps morphisms satisfy the duals of the relations (1.1). Thus

one can equivalently define a simplicial set X as a collection of sets Xn for each integer

n ≥ 0 along with morphisms di : Xn → Xn−1 and si : Xn−1 → Xn for each 0 ≤ i ≤ n that

satisfy the following relations:

didj = dj−1di for i < j

sisj = sj+1si fori ≤ j

disj =


id, if i = j or i = j + 1

sj−1di, if i < j

sjdi−1, if i > j + 1

(1.2)
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Example 1.4.0.2. Let X be an abstract ordered simplicial complex. Then for any n-

simplex (vj0 , . . . , vjn), let di(vj0 , . . . , vjn) = (vj0 , . . . , v̂ji , . . . , vjn), and let si(vj0 , . . . , vjn) =

(vj0 , . . . , vji , vji , . . . , vjn). By adjoining n + 1 element tuples that have repeated elements

to Xn, we get simplicial set ∆op → Set where [n] 7→ Xn, di 7→ di, and si 7→ si. Note that

the definition of the ith face of a simplex in an ordered simplicial complex aligns with the

definition of the ith face when included into this simplicial set.

If we turn the simplicial set from this example into a geometric simplicial complex as

discussed in Section 1.2, the ith degeneracy of any n-simplex (which is an n+ 1-simplex)

would be sent to a geometric n-simplex. We don’t like these garbage annoying simplices,

so we call any simplex that is the image of some si a degenerate simplex.

Geometric simplices form the basic building blocks of geometric simplicial complexes, and

we now introduce the corresponding notion for simplicial sets, the standard simplices.

These simplicial sets will form the basic building block of simplicial sets. In 1.4.1 we will

rigorously define how one can construct any simplicial set using the standard simplices.

Definition 1.4.0.3. For any integer n ≥ 0, we call ∆n := Hom∆(−, [n]) the nth standard

simplex.

For any integer k ≥ 0, the set of k-simplices, ∆n
k , is the collection of the morphisms

[k] → [n] in ∆. The face map di : ∆n
k+1 → ∆n

k sends a (k + 1)-simplex f to f ◦ di, and

the degeneracy map si : ∆n
k−1 → ∆n

k sends a (k − 1)-simplex g to g ◦ si. For 0 ≤ k ≤ n,

the non-degenerate k-simplices of ∆n
k are the injective maps [k] → [n]. For k > n all

k-simplices of ∆n are degenerate (since none of these maps are injective).

We can identify any k-simplex of ∆n with the (k + 1)-tuple (f(0), . . . f(k)). This gives

a graphical way to represent the nth standard simplex. Start the standard topological

n-simplex that has n + 1 vertices labeled from 0 through n. Then let there be an arrow

from the ith to the jth vertex when i ≤ j. Any k-simplex of ∆n corresponds to the convex

hull spanned the vertices σ(0) ≤ · · · ≤ σ(k). Conversely, any ordered list of k + 1 vertices

v0 ≤ · · · ≤ vk, there is a corresponding k simplex of ∆n that sends i to vi. A simplex is

degenerate if and only if there is a repeated vertex in the corresponding list. The ith face

map, di∆
n corresponds to projecting the topological n-simplex on to its face opposite the

ith vertex.
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1

0 2

Figure 1.1: A depiction of ∆2. The tuple (0,0,2) represents the 2-simplex (0, 1, 2) 7→

(0, 0, 2).

Remark 1.4.0.4. Given the categorical definition of the category ∆, the corresponding

definition of ∆n is ∆n = HomCat(−, [n]), where for any integer k ≥ 0, the k-simplices are

∆n
k = HomCat([k], [n]) = N([n])k. Thus ∆n = N([n]) when using the categorical definition

of ∆.

Definition 1.4.0.5 (Simplicial Maps). The category of simplicial sets, denoted sSet, is

the functor category Set∆
op

. Given two simplicial sets X,Y : ∆op → Set, a simplicial set

morphism from X to Y is a natural transformation from X to Y .

We can equivalently define a simplicial set morphism f : X → Y as a collection of maps

fn : Xn → Yn such that fn−1 ◦ dXi = dYi ◦ fn and fn ◦ sXi = sYi ◦ fn−1.

Example 1.4.0.6. For any morphism g : [n]→ [m] in ∆, there is a corresponding simpli-

cial set morphism g∗ : ∆n → ∆m defined by g∗(l) = g ◦ l for any k-simplex l.

1.4.1 Application of the Yoneda Lemma and Density Theorem

Let X be a simplicial set. Then the Yoneda Lemma implies that Hom(∆n, X) ∼= Xn. There

is a natural correspondence between n-simplices of X and simplicial maps ∆n → X, and we

often abuse notation to use σ ∈ Xn and the corresponding map ∆n → X interchangeably.

We can use the correspondence of n-simplices of X and simplicial maps ∆n → X to depict

the n-simplices of X. Let σ : ∆n → X. Then we depict σ in almost the same way we

depicted ∆n. Instead of the vertices being elements of ∆n
0
∼= [n] they will instead be

elements of σ(∆n
0 ).

Informally, the density theorem shows that every simplicial set is the colimit over all

integers n ≥ 0 of its n-simplices. Given a simplicial set X : ∆op → Set, we form the

category of elements (sometimes called the category of simplices), IX . The objects of this

category are pairs ([n], x) where x ∈ Xn, meaning that they correspond to the simplices of

X. Given any object x ∈ Xn and a map f : [m]→ [n], there is a corresponding morphism
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(x, f) : x → X(f)(x) which acts on x by precomposition. The density theorem implies

that we can construct X upto isomorphism as the colimit of y ◦ p where p is the forgetful

functor IX → ∆, and y is the Yoneda embedding.

In 1.1.1 we gave an alternative but equivalent way to construct to category of objects.

Under this definition the objects of this category are simplicial set morphisms ∆n → X

(which correspond to the simplices of X).

Given an object x : ∆n → X and a map f : ∆n → ∆m, there is a corresponding morphism

(x, f) : x → x ◦ f . Note that for any object x : ∆n → X of IX , y(p(x)) = ∆n. For

notational purposes, we will often not reference IX and simply write X ∼= colim∆n→X∆n

Geometric simplicial complexes are constructed by starting with a collection of geometric

simplices and the specifying the faces of every geometric simplex, in effect “glues” together

the geometric simplices. The density theorem in the context of simplicial sets can be

interpreted as saying that simplicial sets are built in a similar way. The colimit can be

thought of as taking copies of ∆n for each n-simplex and “gluing” together any two copies

that have a common face.

Given a map of simplicial sets g : X → Y , there is a corresponding functor between their

categories of objects G : IX → IY , defined as follows. For any object σ : ∆n → X, let

G(σ) = g ◦ σ Given a morphism (σ, f) : σ → σ ◦ f , where f : ∆m → ∆n, let G(σ, f) =

(G(σ), f) Then the universal property of the colimit gives a morphism colim∆n→X∆n →

colim∆n→Y ∆n.

1.4.2 Faces, Boundaries, and Horns

Definition 1.4.2.1 (Faces and Boundaries of the Standard Simplices). For integers n and

i such that n ≥ 0 and 0 ≤ i ≤ n, the ith face of the nth standard simplex, denoted δi∆
n,

has k simplices of the form f : [k]→ [n] such that i is not in the image of f . The boundary

of the nth standard simplex, δ∆n is the union ∪ni=0δi∆
n.

Proposition 1.4.2.2. For any integers n and i such that 0 ≤ i ≤ n, δi∆
n is a simplicial

set. δ∆n is a simplicial subset for any integer n ≥ 0.

Proof. Since δi∆
n is a subset of ∆n, we know that the face and degeneracy maps satisfy

the relations (1.2). All that remains to show is that δi∆
n is closed under the face and
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degeneracy maps. This is trivial; if f : [k]→ [n] avoids i, then djf = f ◦dj and sjf = f ◦sj

avoid i for all 0 ≤ j ≤ n.

To prove that δ∆n is a simplicial set, note that the union of simplicial sets is a simplicial

set.

There are two other equivalent ways to define δi∆
n. First, δi∆

n is the image of

di
∗
: ∆n−1 → ∆n. Second, δ∆n is the simplicial subset of ∆n such that any k-simplex

f : [k] → [n] is not surjective. From this we deduce that if k < n then (δ∆n)k = ∆n
k .

Similarly, (δ∆n)n = ∆n
n \ {id[n]}. Thus we can also obtain the boundary of the nth

standard simplex from ∆n by removing the single non-degenerate n simplex id[n], as well

as all of its degeneracies.

∆n is the combinatorial generalisation of the topological n-ball, and correspondingly, δ∆n

is the generalization of the topological (n − 1)-sphere. A formal justification for this

intuition is given in example Proposition 1.5.0.1.

We can pictorially represent the boundary δ∆n in the same way as was described for ∆n,

except we imagine that the interior is removed. This prevents one from picking tuples that

contains all n+ 1-vertices, which corresponds exactly to the the morphisms of ∆n that are

not present in δ∆n. The ith face, δi∆, corresponds to the face opposite the ith vertex in

this representation.

Definition 1.4.2.3 (Horns). For integers n and i such that n ≥ 0 and 0 ≤ i ≤ n, the

ith horn of the nth standard simplex, denoted Λni , is the simplicial subset of δ∆n that

has k-simplices f such that f avoids i, for all integers k ≥ 0. A horn is an inner horn if

0 < i < n. For any simplicial set X, we call a simplicial map Λni → X an ith n-horn of X.

We can equivalently define the Λni as the union⋃
j∈[n]\{i}

δj∆
n.

We pictorially represent Λni in the same way as ∆n, but with the interior and face opposite

the ith vertex removed. This prevents one from forming tuples that contains all vertices, or

tuples that contains all except the ith vertex, which correspond precisely to the morphisms

of ∆n that are not present in Λni .

Note that for k < n−1, (Λni )k = ∆n
k , and when k = n−1, we have that (Λni )k = ∆n

k \{di}.

Any horn Λni is a simplicial set; the proof is nearly identical to that of Proposition 1.4.2.2.
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1.5 The Realization of a Simplicial Set

The realization functor | · | : sSet → Top gives a way to assign a topological space to

any simplicial set. We start by defining the realization of the standard simplices, and

using the density theorem, we extend this definition to all simplicial sets. The realization

of the standard n-simplex, |∆n|, is the standard topological n-simplex, {(x0, . . . , xn) ∈

Rn+1 |
∑n

i=0 xi = 1 and xi ≥ 0}. This is the geometric n-simplex spanned by the vertices

{ei}0≤i≤n where ei is the ith standard unit vector, and we call ei the ith vertex of |∆n|.

For any map f : [n] → [m], we define |f | : |∆m| → |∆n| as |f |(t0, . . . , tm) = (u0, . . . , un)

where ui =
∑

j∈f−1(i) tj . We can define the geometric faces by exploiting the fact that

δi∆
n = di

∗
(∆n−1). In particular, |di∗ | is the projection of |∆n| onto the face opposite the

ith vertex (the geometric simplex spanned by {ej}0≤j≤n,j 6=i). With this we have defined

the functor | · | for all of the standard simplices.

Recall that for any simplicial set X, X ∼= colim∆n→X∆n. More precisely, X is isomor-

phic to the colimit of the diagram y ◦ p. Since y(p(σ)) = ∆n for any object σ of IX ,

|y(p(σ))| is already defined, and we define |X| as the colimit of |y ◦ p|, which we often

denote as colim∆n→X |∆n|. For any simplicial set morphism g : X → Y , there is a corre-

sponding functor between their categories of objects, G : IX → IY . This induces a map

|g| : colim∆n→X |∆n| → colim∆n→Y |∆n|. Proving functorialty is trivial since we defined

the action of | · | on morphims through the use of induced functors and colimits.

Proposition 1.5.0.1. |∆n| ∼= Dn, where Dn denotes the topological n disk and δ∆n ∼=

Sn−1.

Proof. We will later show that | · | is left adjoint, so it preserves colimits. Since unions are
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a particular type of colimit, we have the following.

|δ∆n| = |
n⋃
i=0

δi∆|

= |
n⋃
i=0

di
∗
(∆n−1)|

=
n⋃
i=0

|di∗(∆n−1)|

=
n⋃
i=0

{(t0, t1, . . . , tn) ∈ Rn+1 |
n∑
j=0

tj = 1, tj ≥ 0 for all j 6= i, and ti = 0}

= {(t0, t1, . . . , tn) ∈ Rn+1 |
n∑
j=0

tj = 1, tj ≥ 0 for all j, and for some i, ti = 0}.

Proposition 1.5.0.2. For any simplicial set X the realization |X| can be given the struc-

ture of a CW-complex.

To prove this proposition we will need the machinery of skeletal filtrations of simplicial

sets, so we procrastinate on proving this until after Proposition 1.8.0.6.

1.6 Products of Simplicial Sets

The product in sSet = Set∆
op

is defined object-wise. That is, if X and Y are simplicial

sets then the (X × Y )n = (X × Y )([n]) = X([n]) × Y ([n]) = Xn × Yn. Verifying that

this construction satisfies the universal property is trivial using the universal property of

products in Set. For any map f : [n]→ [m] the map (X × Y )(f) : (X × Y )m → (X × Y )n

is defined as (x, y) 7→ (X(f)(x), Y (f)(y)) for any (x, y) ∈ (X × Y )m

Proposition 1.6.0.1. Let X and Y be simplicial sets. Then |X × Y | ∼= |X| × |Y |.

To prove this one shows that the realization is a left exact and thus preserves finite limits.

For a proof consult Theorem 5.2 of [Fri08].

1.7 Internal Hom of sSet

For any set X in Set, the functor −×X is left adjoint to Hom(X,−). We want to define

a similar internal hom functor [−,−] : sSetop × sSet→ sSet such that for a fixed simplicial



CHAPTER 1. BACKGROUND 21

set X, − ×X is left adjoint to [X,−]. For any sets X and Y , Hom(X,Y ) is itself a set.

Similarly, if X and Y are simplicial sets we want for [X,Y ] to be a simplicial set.

To construct the internal Hom functor we start by assuming that such a functor with the

desired properties exists, and use the Yoneda lemma to arrive at a suitable definition. If

the internal Hom functor exists and satisfies the adjointness property discussed, then for

any simplicial sets X and Y

[X,Y ]n ∼= HomsSet(∆
n, [X,Y ]) ∼= HomsSet(∆

n ×X,Y )

Thus we define [X,Y ] as the simplicial set where [X,Y ]n = HomsSet(∆
n × X,Y ) for all

integers n ≥ 0. For any n-simplex ϕ : ∆n ×X → Y , we define di(ϕ) as the composition

∆n−1 ×X di
∗×id−−−−→ ∆n ×X ϕ−→ Y,

and define si(ϕ) as the composition

∆n+1 ×X si
∗×id−−−−→ ∆n ×X ϕ−→ Y

One can easily check that the face and degeneracy maps satisfy the relations of Equation

1.2, making [X,Y ] a simplicial set.

Let (aop, b) : (X,Y ) → (X ′, Y ′) be a morphism of sSetop × sSet. Define [aop, b] as the

simplicial morphism sending any ϕ ∈ [X,Y ]n to the composition ∆n×X ′ id×a−−−→ ∆n×X ϕ−→

Y
b−→ Y ′ (which is an element of [X ′, Y ′]n).

Given two simplicial sets X and Y , we define an evaluation map ev : [X,Y ]×X → Y by

(f, σ) 7→ f(id[n], σ)

where σ : ∆n → X is an n-simplex of X and f : ∆n ×X → Y is an n-simplex of [X,Y ].

To prove that the evaluation map is a simplicial morphism, note that it takes n-simplices

to n-simplices. So what is left to show is that it commutes with the face and degeneracy

maps. We will only show this for the face maps, as the argument for the degeneracy maps

is nearly identical. Let f : ∆n × X → Y be an n-simplex of [X,Y ], and let σ : ∆n → X
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correspond to an n-simplex of X. Then

ev(di(f, σ)) = ev(f ◦ (di, idX), diσ)

= f((di, idX)(id[n−1], diσ))

= f(di, diσ)

= f(di(id[n], σ))

= di(f(id[n], σ))

= di(ev(f, σ)).

Proposition 1.7.0.1. For a fixed simplicial set Y , the functors − × Y and [Y,−] are

adjoint.

Proof. Define a simplicial map ev∗ : HomsSet(X, [Y,Z]) → HomsSet(X × Y, Z) that sends

any g : X → [Y, Z] to the composition X × Y
g×id−−−→ [Y,Z] × Y

ev−→ Z. We must show

that ev∗ is a bijection that is natural in X and Z. To do this we construct the inverse

HomsSet(X × Y,Z) → HomsSet(X, [Y,Z]), which sends any f : X × Y → Z to the map f∗

where for any x ∈ Xn (viewed as a map ∆n → X), f∗(x) is the composition Y ×∆n id×x−−−→

Y × X
g−→ Z. Naturality follows from the fact that ev∗ is defined by precompositions

and postcompositions with morphisms meaning that it automatically commutes with any

morphisms.

1.8 Skeletal Filtration and the Dimension of a Simplicial Set

A CW-complex is the union of its skeleta, and one can easily define the dimension of a

CW-complex to be the supremum over n such that there exist n-cells. We want to define

similar notions for a simplicial set. We will give a recursive way to construct the skeleta of

a simplicial set that uses certain pushout diagrams. The image of these pushout diagrams

under the realization will define a CW-complex, proving that the realization of a simplicial

set is a CW-complex.

The following proposition gives a number of equivalent definitions of a degenerate simplex.

The equivalences show that the information conveyed by a degenerate simplices can be

conveyed by simplices of a lower dimension, similar to how an n-cell of a given CW-complex

may actually be homeomorphic to a disk of dimension less than n.
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Proposition 1.8.0.1. Let S be a simplicial set and let σ be an n-simplex, considered as

a map σ : ∆n → S. Then the following are equivalent:

1. σ is the image of some degeneracy map si : Sn−1 → Sn.

2. σ factors as a composition ∆n f∗−→ ∆n−1 σ′−→ S where f is a surjective map [n] →

[n− 1] and σ′ is an (n− 1)-simplex of S.

3. σ factors as a composition ∆n f∗−→ ∆m σ′−→ S where m < n, f [n]→ [m] is surjective,

and σ′ is an m-simplex of S.

4. σ factors as a composition ∆n f∗−→ ∆m S−→ where m < n and f : [n]→ [m].

Proof. Clearly 1 =⇒ 2 =⇒ 3 =⇒ 4, since each is a more general version of the

preceding one, so we will show that 4 =⇒ 1. Suppose that m < n and σ factors

as ∆n f∗−→ ∆m σ′−→ S. Since m < n, f : [n] → [m] is not injective. Thus for some i,

f(i) = f(i + 1). Then f factors through the codegeneracy map si : [n] → [n − 1], and σ

factors as the composition ∆n si
∗

−−→ ∆n−1 f ′∗−−→ ∆m σ′−→ S. Now we simply compose the last

two morphisms to obtain σ as the ith degeneracy of σ′ ◦ f ′∗ .

The following proposition establishes that any degenerate simplex is a degeneracy of a

unique non-degenerate simplex. In other words there is no intersection between the degen-

eracies of two distinct non-degenerate simplices. The proof is lengthy and not particularly

insightful, so we have omitted it. It can be found in [Lur06].

Proposition 1.8.0.2. Let S be a simplicial set and let σ : ∆n → S be a degenerate n

simplex. Then there exists unique m, α, and β such that σ equals the composition

∆n α∗−→ ∆m β∗−→ S

where m < n, α : [n]→ [m] is surjective and β is a non-degenerate m simplex of S.

Definition 1.8.0.3. Let S be a simplicial set. For each integer n ≥ 0, skk(Sn) is the set

of n-simplices of S that factor through ∆k. The k-skeleton of S is skk(S) := {skk(Sn)}n≥0.

Recalling Proposition 1.8.0.1, for n > k it is clear that skk(Sn) are the n-simplices of S

that are degeneracies of m-simplices for m ≤ k. Thus we can think of skk(Sn) as filtering

out all of the n-simplices that are not degeneracies of m-simplices for some m ≤ k. We can

understand skk(S) as the simplicial subset of S generated by S0, S1, . . . Sk. In addition,



CHAPTER 1. BACKGROUND 24

this proposition shows that the k-skeleton skk(S) is closed under the face and degeneracy

maps, making it a simplicial set. Since for every n ≥ 0 if k ≥ n then Sn ⊆ skk(S), we get

that ⋃
k≥0

skk(S) = S. (1.3)

This is similar to the construction of CW-complexes as the union of their skeleta. In fact

in Proposition 1.8.0.6 we provide a recursive construction of the k-skeleton using pushouts

that looks nearly identical to the construction of the skeleta of CW-complexes.

Definition 1.8.0.4. A simplicial set S has dimension ≤ k if n > k implies that all of Sn

are degenerate simplices. If S has dimension ≤ k but not ≤ k − 1 then we say that S has

dimension k.

The following proposition asserts that any simplicial morphism from a simplicial set of

dimension ≤ k is entirely determined its’ action m-simplices where m ≤ k. The proof has

been omitted but can be found in [Lur20, Tag 001A].

Proposition 1.8.0.5. Let S be a simplicial set.

1. For any integer k ≥ 0, skk(S) has dimension ≤ k.

2. Let k ≥ 0 be an integer and let T be a simplicial set such that the dimension of T is

≤ k. Then composition with the inclusion skk(S) ↪→ S induces a bijection

HomsSet(T, skk(S))→ HomsSet(T, S)

Let S be a simplicial set, and denote by Sndk the non-degenerate k-simplices of S. We can

think of any σ ∈ Sndk as a map ∆k → skk(S). Since the dimension of δ∆k is ≤ k − 1, its

image under σ has dimension ≤ k− 1, making it a simplicial subset of skk−1(S). Thus for

any σ ∈ Sndk there is a corresponding map δ∆k → skk−1(S).

Proposition 1.8.0.6. The above construction determines a pushout square for all integers

k ≥ 0, depicted below. ∐
σ∈Snd

k
δ∆k

∐
σ∈Snd

k
∆k

skk−1(S) skk(S)
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A proof of this proposition can be found in [Lur20, Tag 001B]

This proposition makes it easy to prove Proposition 1.5.0.2, which states that the geometric

realization of any simplical set can be given the structure of a CW-complex.

Proof. (of Proposition 1.5.0.2). In Proposition 2.3.0.3 we show that the geometric real-

ization functor is left adjoint. Left adjoints commute with colimits, and in particular

the realization commutes with pushouts. Thus by applying the realization functor to the

pushout diagram of Proposition 1.8.0.6, we get the following pushout diagram.

|
∐
σ∈Snd

k
δ∆k| ∼=

∐
σ∈Snd

k
|δ∆k| |

∐
σ∈Snd

k
∆k| ∼=

∐
σ∈Snd

k
|∆k|

|skk−1(S)| |skk(S)|

Note that by Proposition 1.5.0.1 this pushout is effectively gluing k-disks to |skk−1(S)|

along their boundaries. Now if we show that |S| =
⋃
k≥0 |skk(S)|, then by definition this

gives |S| the structure of a CW-complex. Note that we can obtain the union
⋃
k≥0 skk(S)

as the colimit of the diagram

sk0(S) ↪→ sk1(S) ↪→ sk2(S) ↪→ · · · .

Thus Equation (1.3) and the left adjointness of | · | proves the result.



Chapter 2

The Nerve and Singular Functors

In this chapter we introduce the nerve functor N : Cat → sSet, and the singular functor

Sing: Top→ sSet. These functors will help motivate the model of ∞-categories presented

in Chapter 3.

The nerve of a category and the singular set of a space are important examples of ∞-

categories. Recall that our goal is to present∞-categories as categories in which the notion

of equality has been replace with isomorphism. Topological homotopy theory already has

a notion of isomorphism, namely homotopy. In Chapter 3 we will study what happens to

homotopies under the singular functor. Generalizing the properties of homotopies under

the singular functor will guide our search for the correct definition of isomorphism in ∞-

categories (which we will refer to as homotopy). The nerve is fully faithful, and considering

the action of the nerve functor on various categorical constructions motivate corresponding

constructions in the world of ∞-categories where we can no longer use the notion of

equality.

2.1 The Nerve of a Category

Definition 2.1.0.1. The nerve functor N : Cat→ sSet is defined in the following way:

• For any small category C, N(C) is the simplicial set where N(C)n is the set of functors

[n] → C. For any morphism f : [n] → [m] of ∆, let N(C)(f) : N(C)m → N(C)n be

defined by precomposition with f .

• If F : C → D is a functor, then we define N(F ) by postcomposition with F .

26
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Checking that N(C) is a simplicial set for any small category C amounts to checking that

the relations (1.2) are satisfied, which is trivial.

Remark 2.1.0.2. The 0-simplices of N(C) can be identified with objects of C, and the

1-simplices can be identified with morphism. For any n ≥ 1, an n-simplicx σ of N(C) can

be identified with strings of n composable morphisms of C

(C0
f1−→ C1

f2−→ · · · fn−→ Cn). (2.1)

We will gleefully and repeatedly abuse notation by using an object c and the corresponding

0-simplex of N(C) interchangeably. Similarly, for any morphism f of C we will use it and

the corresponding 1-simplex of N(C) interchangeably.

Given such an identification of σ as in (2.1), di(σ) can be identified with

(C1
f1−→ · · ·Ci−1

fi+1◦fi−−−−→ Ci+1
fi+1−−−→ · · · fn−→ Cn) for 0 < i < n. If i = 0 or i = n, diσ

is obtained by deleting C0 and f1 from σ, or deleting Cn and fn from σ, respectively.

Similarly, siσ = σsi can be identified with (C0
f0−→ · · · fi−→ Ci

idi−−→ Ci
fi+1−−−→ · · · fn−→ Cn).

For any object c of C, the morphism corresponding to idc is s0(c). For any 2-simplex τ

of N(C), we have that d1(τ) = d0(τ) ◦ d2(τ). An n-simplex of N(C) is non-degenerate

precisely when none of the morphisms in the associated string are identity morphisms.

Proposition 2.1.0.3. The nerve functor N : Cat→ sSet is fully faithful.

Proof. Let C and D be categories. We want to show that the nerve functor gives a bijection

HomCat(C,D)→ HomsSet(N(C), N(D)).

Let F,G : C → D be distinct functors. Then for some morphism ρ of C, F (ρ) 6= G(ρ).

We continue the tradition of abusing notation by considering ρ as a 1-simplex of N(C).

In particular, this means that N(F )(ρ) = F (ρ) 6= G(ρ) = N(G)(ρ). Thus N(F ) 6= N(G),

and N gives an injective map HomCat(C,D)→ HomsSet(N(C), N(D))

Now let f : N(C)→ N(D) be a simplicial set morphism. By Remark 2.1.0.2 any n-simplex

of N(C) is determined by its 1-faces. Thus any simplicial set morphism from N(C) is

determined by its action on 0 and 1-simplices. In particular, f is determined by its

action on the 0 and 1-simplices of N(C), which correspond to objects and morphisms of

C, respectively. Thus there is a functor F̃ : C → D corresponding to f . Clearly for 0 and

1-simplices N(F̃ ) and f agree, and by the observation that f is determined by its action

on the 0 and 1-simplices of N(C), we have that N(F̃ ) = f . Thus N gives a surjective map

HomCat(C,D)→ HomsSet(N(C), N(D)).



CHAPTER 2. THE NERVE AND SINGULAR FUNCTORS 28

2.1.1 Extension Properties

Proposition 2.1.1.1. For any small category C, N(C) satisfies the following condition:

For any integer n ≥ 2, integer i such that 0 < i < n, and simplicial morphism σ0 : Λni →

N(C) there is a unique extension of σ0 to ∆n.

Proposition 2.1.1.1 is obvious when n = 2 (which forces i=1). In this case, a simplicial set

morphism Λ2
1 → N(C) is equivalent to giving two composable morphisms of C. We want

to extend this to a 2-simplex, which we can do by defining a functor [2] → C which the

morphism 0 ≤ 2 in [n] to the composition of the two morphisms

C1

C0 C2

f2,1f1,0

C1

C0 C2

f2,1f1,0

f2,1◦f1,0

Figure 2.1: The first figure is the image of Λ2
1, and the second is the extension to ∆2. Note

that these do not depict commutative diagrams within C, they are only collections of 0

and 1-simplices of N(C).

More generally, Proposition 2.1.1.1 follows from the uniqueness of composition in cate-

gories.

Proof. Pick any small category C, integer n > 0, and 0 < i < n, and let σ0 : Λni → N(C)

be a map of simplicial sets. Define Cj to be the object of C corresponding to the image of

the jth vertex of ∆n under σ0.

First we consider the case of when n ≥ 3. In this case all of the 1-simplices of ∆n are

contained in Λni . Then for integers 0 ≤ j ≤ k ≤ n, let fk,j be the image under σ0 of the

1-simplex (j ≤ k) of ∆. We claim that the map induced by j 7→ Cj and (j ≤ k) 7→ fk,j

is a functor [n] → C. The induced map takes an m-simplex (i0 ≤ · · · ≤ im) of ∆n to the

diagram depicted by

(C0
fi1,i0−−−→ C1

fi2,i1−−−→ · · ·
fim,im−1−−−−−−→ Cm).

To prove functoriality (and well definedness) it is obvious that identity maps are taken to

identity maps, and we must show that for any 0 ≤ j ≤ k ≤ l ≤ n, fl,j = fl,k ◦ fk,j . If the

two simplex τ corresponding to (j ≤ k ≤ l) is in Λni , then τ ′ : = σ0(τ) is a 2-simplex of

N(C), and since d1(τ ′) = fl,j , d0(τ ′) = fl,k, and d1(τ ′) = fk,j , we have that fl,j = fl,k ◦fk,j .
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Now suppose that τ is not contained in Λni . Since for m < n−1, (Λni )m = ∆n
m, it must the

be the case that 2 < n− 1, and by the assumption that n ≥ 3, we get that n = 3. Thus i

is either 1 or 2. We will only prove the case of i = 1, as the case of i = 2 is very similar.

Since Λ3
1 contains all of the 2-simplices of ∆n other than one, this missing one must be τ .

Thus we get that (j ≤ k ≤ l) = (0 ≤ 2 ≤ 3), and we want to show that f3,0 = f3,2 ◦ f2,0.

By applying σ0 to the 2-simplices of Λ3
1 that are in ∆n, we get the 2-simplices of N(C)

that “witness” the following

f3,1 = f3,2 ◦ f2,1 f3,0 = f3,1 ◦ f1, 0 f2,1 = f2,1 ◦ f1,0.

We put all of this together to compute that

f3,0 = f3,1 ◦ f1,0 = f3,2 ◦ f2,1 ◦ f1,0 = f3,2 ◦ f2,0.

Thus we have a map [n] → C, which by definition is an n-simplex of N(C), and this is

equivalent to giving a map ∆n → N(C). By construction this extends σ0, and since there

were no choices made in the construction, this extension is unique.

All that remains is the case of n = 2 in this case i = 1. Then any σ0 : Λ2
1 → N(C) specifies

a pair of composable morphisms f and g, and the functor [n]→ C given by (0 ≤ 1) 7→ f ,

(1 ≤ 2) 7→ g, (0 ≤ 2) 7→ g ◦ f is an n-simplex of C, (which is equivalent to a map

∆n → N(C)) that extends σ0. Uniqueness follows from the uniqueness of composition in

categories.

2.2 The Singular Functor

Definition 2.2.0.1. The singular functor Sing: Top → sSet is defined in the following

way.

• For any spaceX let Sing(X) be the simplicial set where Sing(X)n = HomTop(|∆n|, X).

The face map di : Sing(X)n → Sing(X)n−1 is defined by precomposition; for any n-

simplex ϕ : |∆n| → X, di(ϕ) is the composition |∆n−1| |d
i∗ |−−−→ |∆n| ϕ−→ X. The

degeneracy maps are defined by precomposition in the same way.

• For any morphism f : X → Y in Top, Sing(f) is defined by composition with f .

Since |∆0| ∼= {∗} and |∆n| ∼= [0, 1] (where [0, 1] denotes the unit interval), the 0-simplices
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of Sing(X) can be identified with the points of X, and the 1-simplices can be identified

with paths [0, 1]→ X.

Proposition 2.2.0.2. Sing is a functor Top→ sSet.

Proof. First we must show that given any space X in Top, Sing(X) is a simplicial set.

Recall that we can do this by showing that the Relations (1.2) hold, which is trivial. Next

we must show that for any continuous map f : X → Y in Top, f induces a simplicial

map Sing(X) → Sing(Y ). Sing(f) takes any n-simplex ϕ : |∆n| → X to the composition

f ◦ ϕ. Clearly this takes n-simplices of Sing(X) to n-simplices of Sing(Y ), but remains

to check is that it commutes with the face and degeneracy maps. We will show the proof

for face maps and the proof for degeneracy maps is nearly identical. Sing(f)(di(ϕ)) =

Sing(f)(ϕ ◦ |di|) = f ◦ ϕ ◦ |di| = di(f ◦ ϕ) = di(Sing(f)(ϕ)). Finally, we note that Sing

respects composition of morphisms by definition.

2.2.1 Kan Complexes

Like the nerve of a small category, the singular set of a topological space has a similar

extension property.

Definition 2.2.1.1. A simplicial set X is a Kan Complex if for every 0 ≤ i ≤ n and

simplicial map Λni → X, there is an extension ∆n → X.

Unlike the extension property for the nerve of a category (Proposition 2.1.1.1), a Kan

complex requires extensions when i = 0 or i = n, but it does not require that these

extensions are unique.

Example 2.2.1.2. ∆n is not a Kan complex for n > 0. For a counter-example, consider

the σ0 : Λ2
0 → ∆2 whose action on 0-simplices sends 0 to 0, 1 to 2, and 2 to 1, and whose

action 1-simplices sends the (0 ≤ 2) in Λ2
0 to 0 ≤ 1 in ∆2, and sends 0 ≤ 1 to 0 ≤ 2. Then

any extension of σ0 to all of ∆2 would require sending the 1-simplex 1 ≤ 2 to a morphism

from 2 to 1, which is impossible as there are no such morphisms.

Proposition 2.2.1.3. For any space X in Top, Sing(X) is a Kan Complex.

Proof. Let X be an object of Top, 0 ≤ i ≤ n, and let σ0 : Λni → Sing(X) be a simplicial

map, we want to show that there is a simplicial map σ : ∆n → Sing(X) that extends σ0.
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1

0 2

1

0 2

Figure 2.2: On the left is a depiction of Λ2
0 and on the right is a depiction of its image

under σ0. The dashed arrow corresponds to the single 1-simplex of ∆2 that is not in Λ2
0.

An extension of σ0 to all of ∆2 would would send the dashed arrow to an arrow from 2 to

1.

Note that such a σ is equivalent to an n-simplex of Sing(X) by the Yoneda Lemma. We will

later prove Proposition 2.3.0.3, which shows that the realization and singular functors are

adjoint, which allows us to identify σ0 with a continuous map f : |Λni | → X. Since there is

a deformation retraction r : |∆n| → |Λni |, we consider the composition |∆n| r−→ |Λni |
f−→ X,

which by adjointness can be identified with a map σ : ∆n → Sing(X). To prove that this

is the desired extension, we must show that the composition Λni ↪−→ ∆n → Sing(X) equals

σ0. By adjointness, this map corresponds to |Λni | ↪→ |∆n| f◦r−−→ X. This composition must

be f (since r fixes elements of |Λni |), using adjointness again, we get σ0.

Remark 2.2.1.4. For any space X, |Sing(X)| is weak homotopy equivalent to X. In

fact, we can view |Sing(X)| as a CW approximation of X (see Proposition 1.5.0.2 for

more details). If f : X → Y is a weak homotopy equivalence of spaces, then |Sing(f)| is as

well. We call a simplicial map between Kan complexes g a weak equivalence if |g| is a weak

homotopy equivalence of spaces. Any Kan complex is weakly equivalent to the singular set

of some space. These properties taken together show that the study of Kan complexes and

weak homotopy equivalences between them encapsulates the homotopy theory of spaces.

Proofs of all of these statements can be found in [Lur06].

2.3 A Unified Treatment

The nerve and singular functors are specific examples of a broader class of functors. Since

s simplicial set is isomorphic to the colimit of all of its simplicies, we can often uniquely

describe functors from sSet to another category by specifying its action on the standard

simplicies.

Let D be any cocomplete category, and let F : ∆→ D be a functor. The goal is to use F
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to construct a pair of adjoint functors sSet
L−⇀↽−
R
D.

∆

sSet D

y F

L

R

n

∆n F ([n])

Let y : ∆ → sSet be the Yoneda embedding. We define L′(∆n) = L′(y([n])) to be equal

to F ([n]). We can extend L′ to all of sSet by requiring that it commutes with colimits.

Let X be a simplicial set Since X ∼= colim(y ◦ p), we define L(X) as colim(L′ ◦ y ◦ p). For

notational purposes, we write

L(X) ∼= L(colim∆n→X∆n) = colim∆n→X(F ([n]).

Any simplicial morphism g : X → Y induces a functor between their categories of objects

G : IX → IY . G then induces a a unique map L(g) : L(X)→ L(Y ).

If one thinks of F as giving a realization of the standard simplices in the category D, then L

extends this realization to all simplicial sets by using the density theorem. This is exactly

what was done when constructing the geometric realization functor, we first defined the

realization in Top of the standard simplices, and then extended this to a realization in Top

for any simplicial set.

The construction of R : D → sSet follows a similar thought process. Given an object D of

D, we want to construct a simplicial set R(D). Up until now, our application of the density

theorem involved deconstructing a given simplicial set as the colimit of its simplices. Now

we work in reverse; if we think of F ([n]) as the realization of ∆n in D, then it would be

natural to set R(D)n : = HomD(F ([n]), D).

We define the face and degeneracy maps via precomposition as follows. Let ϕ be an

n-simplex of R(D). Then

• di(ϕ) = ϕ ◦ F (di), and

• si(ϕ) = ϕ ◦ F (si).

It is easy to check that this satisfies the relations of Equation (1.2), making R(D) a
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simplicial set. Given a morphism f : D → E in D, we define R(f) by composition with f .

More precisely, R(f) sends any n-simplex ϕ to f ◦ ϕ.

Proposition 2.3.0.1. L is left adjoint to R.

Proof. Let D be an object of D and n ≥ 0. By the Yoneda Lemma and by definition

HomsSet(∆
n, R(D)) ∼= R(D)n = HomD(F ([n]), D) = HomD(L(∆n), D).

Now let X be any simplicial set and D be any object of D. Then

HomsSet(X,R(D)) ∼= HomsSet(colim∆n→X∆n, R(D))

∼= lim∆n→XHomsSet(∆
n, R(D))

∼= lim∆n→XR(D)n = lim∆n→XHomD(L(∆n), D)

∼= HomD(colim∆n→XL(∆n), D)

∼= HomD(L(X), D).

Example 2.3.0.2. Let D = Cat, and let F : ∆ → Cat be the inclusion. Then R : Cat →

sSet sends a category C to the simplicial set R(C) where R(C)n = HomCat([n], C) = N(C)n,

so R = N . In particular, the nerve functor is right adjoint.

On the other hand, L : sSet→ Cat sends any simplicial setX to the category colim∆n→X [n],

where [n] is regarded as a category. L in this case essentially “forgets” the structure of

X for any dimension > 2. We construct L(S) explicitly in the following way. For any

0-simplex x of S, let x be the corresponding object in L(S). Then for any 1-simplex f

such that d0(f) = b and d1(f) = a, let there be a corresponding morphism f : a→ b. For

any 1-simplex x, we define the identity morphism of x as s0(x). We begin by defining

composition of such morphisms freely and formally, and then impose the following restric-

tion: f ◦ g = h exactly when there is a 2-simplex σ such that d0(σ) = f , d1(σ) = h and

d2(σ) = g.



CHAPTER 2. THE NERVE AND SINGULAR FUNCTORS 34

y

x z

fg

h

y

x z

fg

h

Figure 2.3: A 2-simplex of X (left) and the corresponding commutative diagram in L(X)

(right).

Proposition 2.3.0.3. Let F : ∆ → Top be the functor sending [n] to |∆n|. Then in the

construction above, | · | = L : sSet → Top and Sing = R : Top → sSet. In particular, the

singular and realization functors are adjoint.

The proof is a trivial application of the definitions.
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∞-Categories

Recall that we want to think of ∞-categories as categories in which the notion of equality

has been replaced by isomorphism (which we call homotopy). Here, we make this idea

rigorous by introducing a model for ∞-categories as well as several key constructions and

proofs.

Recall the extension properties of the nerve and singular functors. ∞-categories gener-

alize both category theory and the homotopy theory of spaces by introducing a common

generalization of these extension properties.

Definition 3.0.0.1. A simplicial set X is an ∞-category if for all integers 0 < i < n, and

simplicial morphisms Λni → X, there is an extension ∆n → X.

Remark 3.0.0.2. Clearly both the nerve of a small category and the simplicial set of a

space are ∞-categories.

Remark 3.0.0.3. Other sources may refer to this model of ∞-categories as “quasi-

categories”.

For any ∞-category D, we call simplicial maps h : Λni → D “horns in D”. Since

Λni = ∪j∈[n]\{i}δj∆
n, a horn h in D is equivalent to the collection {h|δj∆n}j∈[n]\{i}. The

map dj
∗
: ∆n−1 → ∆n sends ∆n−1 to δi∆

n in a bijective way, so we can rewrite our

collection {hj = h◦dj∗ : ∆n−1 → D}j∈[n]\{i}. Thus we can specify any horn by a particular

collection of n simplices of dimension n − 1. By viewing Λni as a subsimplicial set of ∆n

and considering the relations (1.2), the collection of maps {hi} have the property that

dk(hj) = dj−1(hk) for k < j.

35
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In fact, for any collection of maps (or (n − 1)-simplices) {fj : ∆n−1 → D}j∈[n]\{i} such

that dk(fj) = dj−1(fk) when k < j, we can reverse the above arguments to specify a horn

Λni → C. We will often specify such a set by a tuple (f0, · · · , ∗, · · · , fn) where the entry ∗

is in the ith position.

Let C be an ordinary category. Then the 0-simplices of N(C) correspond to the morphisms

of C and the 1-simplices correspond to objects of C. We generalize this in the most straight

forward way possible.

Definition 3.0.0.4. Let D be an infinity category. Then we call the 0-simplices of D

objects and the 1-simplices morphisms. Given a 1-simplex f such that d1(f) = x and

d0(f) = y, we write f : x→ y. Given an object d of some ∞-category D, we call s0(c) the

identity morphism of d, denoted idd.

If X is a space in Top, then objects of Sing(X) correspond to points of X, while morphisms

correspond continuous paths f : [0, 1] ∼= |∆1| → X, which we denote as f : f(0)→ f(1).

Remark 3.0.0.5. We will generally denote the objects of an ∞-category using capital

letters in contexts related to the nerve functor, as objects of categories are often denoted

with capital letters. We will generally denote objects of ∞-categories using lower case

letters in contexts relating to the singular functor, as points of a space are usually denoted

with lower case letters.

3.1 Homotopies of Morphisms

In order to get rid of the notion of equality of morphisms we must define a notion of

homotopies of morphisms. We already have a topological notion of homotopy and we will

use this along with the singular functor to motivate our general definition of homotopies

of morphisms.

Let X be an object of Top. Morphisms of Sing(X) correspond to paths [0, 1] → X.

Let f and g be morphisms such that f(0) = g(0) = x and f(1) = g(1) = y. Then a

topological (fixed endpoint) homotopy from f to g is a map H : [0, 1] × [0, 1] → X such

that H(0, t) = x, H(1, t) = y, H(s, 0) = f(s), and H(s, 1) = g(s). We form the quotient

space Q := ([0, 1]× [0, 1])/({0}× [0, 1]), and since H is constant along the side {0}× [0, 1],

H ′ : Q→ X where [p] 7→ H(p) is well defined and continuous.
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yg
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Figure 3.1: A depiction of H (left) and H ′ (right)

The map p : Q→ |∆2| defined by [(x, y)] 7→ (1−x−y, x, y) is a homeomorphism. Consider

H ′ ◦ p−1 : |∆2| → X. By definition σ := H ′ ◦ p−1 is a 2-simplex of Sing(X). d2(σ) =

H ′ ◦ p−1 ◦ |d2∗ | = f : [0, 1] → X, d1(σ) = g, and d0(σ) = y, when viewing |∆1| as [0, 1].

Note that after picking a homotopy H, no choices were made in the construction of σ, and

in fact we can reverse the construction to recover H from σ.

Thus given two 1-simplices f, g : x → y in Sing(X), we define a homotopy from f to

g is a 2-simplex σ such that d0(σ) = idy, d1(σ) = g and d2(σ) = f . By the above

arguments, homotopies from f to g in Sing(X) correspond bijectively to topological fixed-

point homotopies from f to g in X. We accept this definition of a homotopy of morphisms

with out any modifications in a general ∞-category.

Definition 3.1.0.1. Let D be an ∞-category. Then given two morphisms f, g : x → y

of D, a homotopy from f to g is a 2-simplex σ such that d0(σ) = idy, d1(σ) = g, and

d2(σ) = f .

D

C D

idyf

g

Figure 3.2: A depiction of a homotopy from f to g.

We will try to always make reference to a specific homotopy from f to g rather that

asserting that they are homotopic. This emphasizes that we have replaced the abstract

notion of equality with the concrete structure of homotopies.

The relation induced by fixed point homotopies is an equivalence relation on the set paths

from x to y. The correspondence between homotopies of morphisms in Sing(X) and topo-

logical homotopies of paths in X shows that homotopies of morphisms in Sing(X) induce

an equivalence relation on the set of morphisms from x to y. The following proposition

shows that this is true in general, and is the first proof that takes advantage of the horn
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filling condition of ∞-categories.

Proposition 3.1.0.2. Let D be an ∞-category, let x and y be objects of D, and denote

by E the set of morphisms from x to y. Then homotopy is an equivalence relation on E.

Proof. To show reflexivity, let f : X → Y be a morphism. Then s1(f) is a homotopy from

f to itself.

Now let f , g, and h be morphisms X → Y such that there exists a homotopy σ2 from f

to h, and a homotopy σ3 from f to g. Then we can construct a simplicial map Λ3
1 → D

corresponding to the tuple (s1(s0(Y )), ∗, σ2, σ3), which is depicted in the following diagram.

Y Y

X Y

idY

idY idYf g

h

Figure 3.3: The shaded portion represents the 2-simplex that must be specified to extend

this horn to a 3-simplex.

There must be an extension of this map to ∆n. In particular, the image of δ3∆ under this

extension (corresponding to the shaded face in the diagram) will be a homotopy from f

to g.

By letting h = f the above construction shows symmetry of homotopy. Symmetry shows

that the statements “f is homotopic to g and f is homotopic to h” and “g is homotopic

to f and f is homotopic to g” are equivalent. Then the previous argument shows the

transitivity of homotopy.

The following proposition will be used in many proofs.

Proposition 3.1.0.3. Let D be an ∞-category, and let f, f ′ : x→ y. Then the following

conditions are equivalent:

1. There exists a 2-simplex σ of D such that d0(σ) = idy, d1(σ) = f ′, and d2(σ) = f .

2. There exists a 2-simplex τ of D such that d0(τ) = f ′, d1(τ) = f , and d2(τ) = idC .
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Figure 3.4: A simplex satisfying Condition 1 (left), and a simplex satisfying Condition 2

(right).

This proposition essentially gives an equivalent definition of a homotopy between two

morphisms. We would have gotten this definition if we had chosen to collapse the side

{1} × [0, 1] instead of {0} × [0, 1] in the construction at the beginning of this section.

Proof. Suppose that there exists a 2-simplex σ satisfying Condition 1. Consider the horn

γ0 : Λ3
2 → C corresponding to the tuple (σ, s1(f), ∗, s0(f)), depicted below.

x y

x y

f

f ′ idyidx f

f

Figure 3.5: The shaded portion represents the 2-simplex that must be specified to extend

this horn to a 3-simplex.

There is an extension γ : ∆3 → D, and τ := γ(δ2(∆n)) satisfies Condition 2. There is a

similar proof of the converse statement.

3.2 Compositions of Morphisms

In ordinary categories the composition of two morphisms is unique. Another way to phrase

this is that for any composable morphisms f and g, any two compositions of f and g are

equal. As we have been stressing to the point of annoyance, we are no longer allowed to

use the concept of equality in the setting of ∞-categories. Thus we would want for there

to be a homotopy between any two compositions of f and g, where f and g are composable

morphisms in an ∞-category.

We begin by considering the composition of morphisms in an ordinary category C and

what the corresponding structure is in its nerve, N(C). Given two composable morphisms
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f : x→ y and g : y → z in C, we can form the horn Λ2
1 → N(C) corresponding to (g, ∗, f),

and by the definition of ∞-categories, there is a filling of this horn to a map ∆n → N(C),

which corresponds to an n-simplex σ : [n] → C of N(C). Recall that such extensions are

unique when working with the nerve of a category. Note that σ then must be the only

2-simplex such that d0(σ) = g, d2(σ) = f , and d1(σ) = d1(σ) ◦ d2(σ) = g ◦ f . We can say

that the 2-simplex σ “witnesses” g ◦ f as a composition of g and f , where f , g, and g ◦ f

are considered as morphisms of N(C). We generalize this definition in the following way.

Definition 3.2.0.1. Given an ∞-category D and morphisms f : x → y and g : y → z,

we say that h : x → z is a composition of g and f if there exists a 2-simplex σ such

that d0(σ) = g, d1(σ) = h, and d2(σ) = f . In this case we say that σ witnesses h as a

composition of g and f .

Y

σ

X Z

gf

h

Clearly there can be distinct compositions of g and f . More subtly, there can be multiple

2-simplices that witness h as a composition of f and g. If f and g are a pair of composable

morphisms in an ordinary category C, we would hope that there is both a unique compo-

sition and a unique witness of that composition when viewing f and g are morphisms of

N(C). The following proposition shows this, and more generally shows that composition

is unqiue up to homotopy.

Proposition 3.2.0.2.

1. If C is an ordinary category, then for any morphisms f : x → y and g : y → z of

N(C), there is a unique composition of g and f in N(C), and there is a unique

2-simplex σ witnessing the composition.

2. If D is an ∞-category and f : x → y and g : y → z are morphisms of D, then there

exists at least one composition of g and f .

3. With D, f , and g as above, given two compositions of g and f there is a homotopy

from one to the other.
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4. With D, f , and g as above, if h is a composition of g and f and there exists a

homotopy from h to h′, there exists a 2-simplex witnessing h′ as a composition of g

and f .

Proof.

1. Trivial by the uniqueness in the extension property of the nerve.

2. We can form the horn σ0 : Λ2
1 → D corresponding to the tuple (g, ∗, f). There is

an extension to σ : ∆2 → D, and the 2-simplex corresponding to σ witnesses that

σ(δ1(∆2)) is a composition of f and g.

y

x z

gf

y

x z

gf

σ(d1(∆2)))

Figure 3.6: A depiction of the horn σ0 : Λ2
1 → D (left) and a depiction of extension to

σ : ∆2 → D (right).

3. Let τ2 and τ3 be witnesses of compositions of f and g. Then we can form the horn

σ0 : Λ3
1 → D specified by the tuple (s1(g), ∗, τ2, τ3)

y z

x z

g

g idzf

Figure 3.7: The shaded portion represents the 2-simplex that must be specified to extend

this horn to a 3-simplex.

4. Suppose that σ witnesses h as a composition of g and f , and τ is a homotopy from

h to h′. We form the horn γ0 : Λ3
2 → D corresponding to the tuple (σ, τ, ∗, s1(g)),

depicted below. We know that there is an extension γ : ∆3 → D and γ(δ2(∆3))

witnesses h′ as a composition of f and g.
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y z

x z

g

g idzf h

h′

Figure 3.8: The shaded portion represents the 2-simplex that must be specified to extend

this horn to a 3-simplex

Example 3.2.0.3. Given a space X, we can form the concatenation of two paths

f, g : [0, 1] → X such that f(1) = g(0) in the following way, (f ∗ g)(t) =
{

f(2t) if t≤1/2
g(2t−1) if t>1/2.

We can form a 2-simplex of Sing(X) that witnesses f ∗ g as a composition of g and f in

the following way. Let σ : |∆2| → X be defined as σ(t0, t1, t2) =
{
f(t1+2t2) if t0≥t2
g(t2−t0) if t0≤t2 . Any

reparametrizations of this path should also be considered acceptable concatenations, and

in fact one can easily form 2-simplices to witness that any reparametrization is also a

composition of f and g in Sing(X).

Proposition 3.2.0.4. Let D be an∞-category, and f, f ′ : x→ y and g, g′ : y → z. Suppose

that there are homotopies σ from f to f ′, and τ from g to g′. Then there are homotopies

between any composition of g and f and any composition of g′ and f ′.

Proof. First we will show that there is a homotopy between any composition of g and f ,

witnessed σ0, and any composition of g and f ′, witnessed σ1. By Proposition 3.2.0.2 we

know that the existence of a homotopy σ from f to f ′ is equivalent to the existence of

a 2-simplex σ′ such that d0(σ′) = f , d1(σ′) = f ′, and d2(σ) = idx. Consider the horn

γ0 : Λ3
2 → D corresponding to the tuple (σ0, σ1, ∗, σ′), depicted below. We know that

x y

x z

f

gidx f ′

Figure 3.9: The shaded portion represents the 2-simplex that must be specified to extend

this horn to a 3-simplex

this must extend to some γ : ∆3 → D, and γ(δ2(∆3)) is a homotopy between the given

composition of g and f and the given composition of g and f ′ (by Proposition 3.2.0.2).
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One can use similar techniques to find a homotopy between a given composition (and

witness of composition) of g and f ′ and a given composition (and witness of composition)

of g′ and f ′, which shows that there is a homotopy from any composition of g and f to

any composition of g′ and f ′ by the transitivity of homotopy.

In all of these proofs, the fact that two morphisms are homotopic is useless with out the

actual witness of composition. This highlights the fact that homotopy is a structure rather

than an abstract property in ∞-categories.

Composition of morphisms in ordinary cateogories is associative, but the definition of

an associative operation relies on the notion of equality. Rather, in the context of ∞-

categories, we have the notion of associative upto coherent homotopy.

Proposition 3.2.0.5. Let D be an ∞-category and let f : w → x, g : x→ y, and h : y → z

be morphisms of D. Suppose that σ3 witnesses p as a composition of of g and f , σ0

witnesses q as a composition of h and g, and σ1 witnesses r as a composition of h and p.

Then there exists a 2-simplex witnessing r as a composition of q and f .

Note that r is a composition of h with a composition of g and f , while a composition of

q and f is a composition of a composition of h and g with a composition of f . Thus this

proposition shows that composition is “associative upto coherent homotopy”.

Proof. Consider the horn γ0 : Λ3
2 corresponding to the tuple (σ0, σ1, ∗, σ3) depicted below.

x y

w z

g

q hf p

r

Figure 3.10: The shaded portion represents the 2-simplex that must be specified to extend

this horn to a 3-simplex.

We know that there must be an extension of γ0 to γ : ∆3 → D, and γ(δ2(∆3)) witnesses r

being a composition of q and f .
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3.3 Higher Dimensional Morphisms

In the Chapter 0 we introduced the notion of morphisms of arbitrarily high dimension. Let

D be an ∞-category. Although it is not possible to think of every simplex of degree ≥ 2

as a morphism of that degree, it is possible in certain situations. For instance a 2-simplex

that is a homotopy can be thought of as a 2-morphism from its 2nd face to its 1st face.

One interpretation of Proposition 3.1.0.2 is that all of these 2-morphisms are invertible.

More generally, we can think of certain n-simplices that only have two non-degenerate

faces as an n-morphism from one non-degenerate face to the other (and we can think of

these faces as (n− 1)-morphisms). The existence of such an n-simplex is equivalent to the

existence of another such n-simplex in which the ordering of the non-degenerate faces is

reversed. In this way, all higher morphisms are invertible.

For instance, the 3-simplex depicted below can be interpreted as a 3-morphism between

the two non-degenerate faces, which themselves can be thought of as 2-morphisms from f

to g.

y y

x y

idy

idy idyf g

g

Figure 3.11: The interior of this simplex can be thought of as a homotopy from the 2nd

to the 1st face, both of which are homotopies from f to g

3.4 The Homotopy Category

Recall from Example 2.3.0.2 the adjoint pair of functors L : sSet→ Cat and N : Cat→ sSet.

We can think of the action of L on an∞-category D as quotienting by homotopy to obtain

an ordinary category, an idea stated more formally in the following proposition.

Proposition 3.4.0.1. Let D be an ∞-category, and let f, g : x → y be morphisms. Let

f, g : x → y be the corresponding morphisms in L(D). Then f = g if and only if there

exists a homotopy from f to g in D.

Proof. First, note that f = g if and only if the following diagram commutes.
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y

x y

idy=idyf

g

Now note that by the construction given in Example 2.3.0.2 this diagram commutes if and

only if there exists a 2-simplex σ such that d0(σ) = idy, d1(σ) = g, and d2(σ) = f , which

is to say that σ is a homotopy from f to g.

Let D be an ∞-category, and let x and y be two objects. By Proposition 3.1.0.2 we

can form the set of homotopy classes of morphisms from x to y, which we denote by

HomhD(x, y). For any morphism f : x → y, we denote its equivalence class by [f ]. By

Proposition 3.2.0.4, there is a well defined law

HomhD(x, y)×HomhD(y, z)→ HomhD(x, z)

([f ], [g]) 7→ [h]

where x, y, and z are arbitrary objects of D, and h is any composition of g and f .

Proposition 3.2.0.5 shows that this composition law is associative. By Propositions 3.2.0.4

and 3.2.0.2 for any object d, [idd] is a left and right inverse to any composable morphism.

Thus we can define the homotopy category of D, denoted hD as the category with

• objects corresponding to the objects of D, and

• morphisms corresponding to equivalence classes of morphisms in D, i.e. the set of

morphisms from x to y in hD is HomhD(x, y).

By proposition 3.4.0.1, we have that L(D) is equivalent to hD. This gives a more intuitive

idea of the action of L on ∞-categories.

Example 3.4.0.2. Let C be any ordinary category. Then the homotopy category of the

nerve of C is isomorphic to C.

The counit of an adjunction is a natural isomorphism if and only if the right adjoint is

fully faithful [Lei09]. Since the nerve is fully faithful, the counit ε : hN → idCat is a natural

isomorphism, and in particular, εC : hN(C)→ C is an isomorphism of categories.
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3.5 Homotopy Commutative Diagrams vs Homotopy Co-

herent Diagrams

Definition 3.5.0.1. Let D be an ∞-category, and let J be an ordinary category. A

homotopy commutative diagram in D indexed by J is a functor F : J → hD.

A homotopy coherent diagram indexed by J is a functor of ∞-categories N(J )→ D.

Given a homotopy coherent diagram F : N(J )→ D, by applying L as defined in Example

2.3.0.2, we get a functor L(F ) : hN(J ) → hD. By Example 3.4.0.2, we get a functor

J → hD. Thus, given a homotopy coherent diagram, we can construct a homotopy

commutative diagram by passing to homotopy categories.

On the other hand, it is not always possible to lift a homotopy commutative diagram

G̃ : J → hD to some G : N(J ) → D such that L(G) = G̃. This fact highlights the

importance of making reference to specific homotopies rather than just asserting that

two morphisms are homotopic. Homotopy coherent diagrams require that one specifies

all of the relevant homotopies, while a homotopy commutative diagram is just one that

“commutes upto homotopy” with out specifying the corresponding homotopies. However,

there is non-trivial information that is lost when turning a homotopy coherent diagram

into a homotopy commutative one (as evidenced that it is not always possible to lifT a

homotopy commutative diagram to a homotopy coherent diagram).

The information that is lost in this process is the information encoded by the higher degree

simplices, which essentially encode homotopies between homotopies. The interiors of these

higher degree simplices encodes information about the coherence of the homotopies that

make up its faces. This is why ∞-categories are sometimes thought of as categories up to

coherent homotopy.

Example 3.5.0.2. Let C and J be any ordinary categories, and let F : J → hN(C) ∼= C

be a homotopy commutative diagram in N(C) indexed by J . Since the nerve is fully

faithful (Proposition 2.1.0.3), there is a corresponding lift to a homotopy commutative

diagram N(F ) : N(J )→ N(hN(C) ∼= N(C). Thus every homotopy commutative diagram

in N(C) can be lifted to a homotopy coherent diagram in N(C). As such, we can say that

there is no non-trivial information encoded by the higher simplices of N(C).
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3.6 Isomorphisms

There are two different approaches that one could take to defining inverses and isomor-

phisms in ∞-categories: one can either consider the notion of a homotopy inverse and

generalize the concept to ∞-categories with the help of the singular functor, or one could

simply consider if the homotopy class of a morphism is an isomorphism in the homotopy

category. In line with the idea that ∞-categories are categories up to coherent homotopy,

these two constructions will be equivalent.

First we consider the topological approach. Given a continuous map p : A → B, we say

that a map q : B → A is a left homotopy inverse of p if q ◦ p is homotopic to the identity

map of A, idA. Similarly, q is a right homotopy inverse of p if p ◦ q is homotopic to the

identity map of Y . This motivates the following definition.

Definition 3.6.0.1. Let D be an ∞-category, and let f : x→ y, and g : y → x.

• g is a left inverse of f if, given any composition h of g and f , there exists a homotopy

from h to idx.

• g is a right inverse of f if, given any composition h′ of f and g, there exists a

homotopy from h′ to idy.

• If g is both a left and a right inverse of f then we say that g is an inverse of f .

• If f has both a left and a right inverse then we say that f is an isomorphism.

By Proposition 3.2.0.2 we can see that g if a left inverse of f if and only if there is a

2-simplex witnessing idx as a composition of g and f , and similarly g is a right homotopy

inverse of f if and only if there is a 2-simplex witnessing idy as a composition of f and g.

Additionally, g is a left (or right) inverse of f exactly when f is a right (or left) inverse

of g. There are a number of properties that one would desire for left and right inverses.

First, if g is a left (or right) inverse of f and there exists a homotopy from g to g′, it is

not clear that g′ is also a left (or right) inverse of f . Secondly, we want for f to be an

isomorphism if and only if it is invertible. As it stands, it is possible that f has a left

inverse h and a right inverse h′ (making f an isomorphism), while there is no homotopy

from h to h′, meaning that h or h′ may not be an inverse of f . Luckily for us these issues

work themselves out (which we actually prove below instead of relying on the luck).

Proposition 3.6.0.2. Let D be an ∞-category and suppose that g : y → x is a left (or

right) inverse of f : x → y, and suppose that there exists a homotopy from g to g′. Then
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g′ is a left (or right) inverse of f .

Proof. Let σ witness g being a left inverse of f , and let τ be a homotopy from g to g′.

Consider the horn γ0 : Λ3
2 → D corresponding to the tuple (τ, s1(idx), ∗, σ). We know that

there is an extension γ : ∆3 → D, and γ(δ2(∆3)) witnesses that g′ is a left inverse of f .

The proof for right inverses is nearly identical.

Proposition 3.6.0.3. Suppose that f : x→ y admits g as a left inverse and g′ as a right

inverse. Then there exists a homotopy from g to g′.

Proof. Let σ3 witness g′ being a right inverse of f and let σ0 witness g being a left inverse

of f . Consider the horn γ0 : Λ3
2 → D corresponding to the tuple (σ0, s0(g), ∗, σ3). Then

we know that there is an extension γ : ∆3 → D and γ(d2(∆3)) is a homotopy from g′ to

g.

Propositions 3.6.0.2 and 3.6.0.3 show that if f admits a left (or right) inverse then the

set of all left (or right) inverses forms a a homotopy equivalence class of morphisms.

Furthermore, if f admits a left and a right inverse, then the class of the left inverses is

equal to that of the right inverses. This means that f is an isomorphism if and only if it

admits an inverse. In fact these statements prove a much stronger statement.

Proposition 3.6.0.4. Let D be an ∞-category and let f be a morphism of D. Then f

is an isomorphism if and only if [f ] is an isomorphism of the homotopy category hD.

Equivalently, f admits a two-sided inverse if and only if [f ] does.

Example 3.6.0.5. Let C be an ordinary category and let f be a morphism. Then f is an

isomorphism when considered as a morphism of N(C) if and only if f is an isomorphism

when considered as a morphism of C.

Note that equivalence classes of morphisms in N(C) contain only one morphism. Thus if

f , considered as a morphism of N(C), has a left and a right inverse they must be equal.

Thus f has an inverse when considered as a morphism of C.

Example 3.6.0.6. Suppose that D is a Kan complex. Then for any morphism f : x→ y

is an isomorphism. consider the horns γ0 : Λ2
0 → D corresponding to (∗, idx, f), and

γ′0 : Λ2
2 → D corresponding to (f, idy, ∗). There exist extensions to ∆2 denoted γ and γ′,

respectively. γ(δ0(∆2)) is a left inverse of f , while γ′(δ2(∆2)) is a right inverse, meaning

that f is an isomorphism.
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In particular, this means that every morphism of the singular set of a space is an isomor-

phism. This aligns with our intuition as one can easily reverse paths in a space.

3.7 Functors of ∞-Categories

Our goal in this section is to motivate and define the∞-category of functors for two given

∞-categories. We would want this construction of the functor category to “commute”

with the nerve, an idea made rigorous in Proposition 3.7.0.3.

Definition 3.7.0.1. Given two ∞-categories D and E , we call a simplicial map D → E a

functor from D to E . We call [D, E ] the ∞-category of functors from D to E .

Proposition 3.7.0.2. If D and E are ∞-categories then so is [D, E ].

The proof is omitted for brevity but can be found in [Lur20, Tag 0079].

Proposition 3.7.0.3. Let B and C be ordinary categories. Then N(CB) ∼= [N(B), N(C].

This proposition shows that ∞-category of functors is the correct generalization of the

ordinary category of functors, as the nerve commutes with the formation of functor cate-

gories.

Proof. By the adjointness of the internal Hom functor of Cat (3.2), Proposition 2.1.0.3

(3.3), Example 2.3.0.2 (3.4), Remark 1.4.0.4 (3.5), and the adjointness of the internal

Hom functor of sSet (3.5), we have the following natural isomorphism for all n ≥ 0.

N(CB)n = HomCat([n], CB) (3.1)

∼= HomCat([n]× B, C) (3.2)

∼= HomsSet(N([n]× B), N(C)) (3.3)

∼= HomsSet(N([n])×N(B), N(C)) (3.4)

∼= HomsSet(∆
n, [N(B), N(C)]) (3.5)

∼= [N(B), N(C)]n (3.6)

Since we can specify a simplicial map by its actions on the set of n-simplices for each

n ≥ 0, the collection of these natural isomorphisms for all n ≥ 0 identifies an isomorphism

N(CB)→ [N(B), N(C)] in the category sSet.
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Remark 3.7.0.4. The 0-simplices of [D, E ] are functors, while the 1-simplices are called

natural transformations of functors. One can think of the 2-simplices are homotopies

between natural transformations and higher simplices as homotopies of homotopies.



Chapter 4

Fibrations

Fibrations of various types are common tools in both the study of homotopy theory and

category theory. In this chapter, we introduce a variety of different types of fibrations

of simplicial sets. The first section concerns trivial Kan fibrations, which can be used to

show that the composition of morphisms in an ∞-category is unique up to a contractible

space of choices. The second section works with Kan fibrations, and shows how they are

the correct generalization of Serre fibrations to the context of ∞-category theory.

Definition 4.0.0.1. A simplicial morphism p : X → Y is a

• Trivial Kan Fibration if it has the right lifting property with respect to every inclu-

sion δ∆n ↪→ ∆n. That is, for every commutative diagram of solid arrows, there is a

dashed arrow making the following diagram commute.

δ∆n X

∆n Y

p

51
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• Kan Fibration if it has the right lifting property with respect to every horn inclusion

Λni ↪→ ∆n. That is, for any commutative diagram of solid arrows, there is a dashed

arrow making the diagram commute.

Λni X

∆n Y

p

• Inner Kan Fibration if it has the right lifting property with respect to every inner

horn inclusion Λni ↪→ ∆n where 0 < i < n.

Note that a simplicial set D is an ∞-category if and only if the simplicial map D → ∆0 is

an inner Kan fibration.

4.1 Trivial Kan Fibrations

A CW-complex X is said to be (weakly) contractible if every map of CW-complexes

|δ∆n| → X has an extension to |∆n| → X. Similarly, we say that a simplicial set S is

contractible if every simplicial map δ∆n → S extends to a map ∆n → S. Clearly, if a

simplicial set is contractible, then its realization is weakly contractible. As is common in

classical homotopy theory, we introduce a relative version of this concept.

We have already shown that composition of morphisms is unique up to homotopy in ∞-

categories. We will use trivial Kan fibrations to prove a much stronger statement: the

composition of two morphisms is unique up to a contractible space of choices. Proving

this statement will require a substantial amount of theory development. Here we only go

over the broad strokes of the proofs but a more detailed account can be found in [Lur20]

and [Lur06].

Proposition 4.1.0.1. Let p : X → Y be a trivial Kan fibration. Then for any object y of

Y , the fiber X ×Y {y} is a contractible simplicial set.
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Definition 4.1.0.2. Let C be a category that admits pushouts, and let T be a collection

of morphisms of C.

1. T is closed under pushouts if for any pushout diagram in C of the form

A′ A

B′ B

f ′ f

f ∈ T implies that f ′ ∈ T .

2. Let f : C → D and f ′ : C ′ → D′ be morphisms of C. We can view these morphisms

as objects in the functor category C[1]. We say that f is a retract of f ′ in C if it is a

retract of f ′ in C[1]. The collection T is closed under retracts if f being a retract of

f ′ and f ′ ∈ T implies that f ∈ T .

3. We say that a morphism f is a transfinite composition of morphisms in T if there

exists an ordinal number α and a functor F : [α]→ C, given by a collection of objects

{Cβ}β≤α, and a collection of morphisms {fγ,β : Cβ → Cγ}β≤γ≤α, with the following

properties.

• For every non-zero limit ordinal λ ≤ α, the functor F exhibits Cλ as the colimit

of the diagram ({Cβ}β≤λ, {fγ,β}β≤γ≤λ).

• For every ordinal β ≤ α, the morphism fβ+1,β is in T .

• The morphism f is equal to fα,0 : C0 → Cα.

We say that T is closed under transfinite composition if any transfinite composition

of morphisms in T is an element of T .

If T is closed under pushouts, retracts, and transfinite composition then we say that T is

weakly saturated. Given a class S of morphisms, we call the smallest weakly saturated

class of morphisms containing S “the class generated by S”.

The ideas of being closed under pushouts and retracts are fairly self explanatory. Trans-

finite composition generalizes the notion of finite composition of morphisms to an infinite

setting.
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Proposition 4.1.0.3. The following sets of simplicial maps generate the same weakly

saturated class.

1. The set of inner horn inclusions Λni ↪→ ∆n where 0 < i < n.

2. The set of inclusions (δ∆m ×∆2)
∐
δ∆m×Λ2

1
(∆m × Λ2

1) ↪→ ∆m ×∆2 where m ≥ 0.

Proposition 4.1.0.4. Let u be a simplicial morphism. The class of morphisms having

the left lifting property with respect to u is a weakly saturated class of morphisms.

Let D be an ∞-category. Then by definition, the map q : D → ∆0 is an inner Kan

fibration. Let S denote the collection of simplicial maps that have the left lifting property

with respect to q, and let S′ be the weakly saturated class generated by the set of inner

horn inclusions Λni ↪→ ∆n. Since and inner horn inclusion has the left lifting property with

respect to q, S′ is contained in S. By Proposition 4.1.0.3 S′ contains all of the inclusions

(δ∆m×∆2)
∐
δ∆m×Λ2

1
(∆m×Λ2

1) ↪→ ∆m×∆2. Thus we have proved the following lemma.

Lemma 4.1.0.5. If D is an ∞-category then the map D → ∗ has the right lifting property

with respect to all of the inclusions (δ∆m ×∆2)
∐
δ∆m×Λ2

1
(∆m × Λ2

1) ↪→ ∆m ×∆n.

Theorem 4.1.0.6. If D is an ∞-category, then the restriction map r : [∆2,D]→ [Λ2
1,D]

induced by the inclusion Λ2
1 ↪→ ∆2 is a trivial Kan fibration.

Given a 0-simplex σ0 of [Λ2
1,D] (which is just a simplicial map Λ2

1 → D), let the corre-

sponding tuple be (g, ∗, f). Let σ : ∆2 → D be a 0-simplex of [∆2,D] such that r(σ) = σ0.

Then σ is a witness that d1(σ) is a composition of g and f . Conversely, given any

witness ω of a composition of g and f , r(ω) = σ0. Thus we can think of the fiber

r−1(σ0) := {σ0} ×[Λ2
1,D] [∆2,D] as the the space of all choices of 2-simplices that witness

a composition of g and f . Since the fibers of a trivial Kan fibration are contractible Kan

complexes (Proposition 4.1.0.4), the theorem is stating that this parameter space is con-

tractible. Thus we can safely assert that composition in ∞-categories is unique up to a

contractible space of choices.

Proof. We want to show that given any commutative diagram of solid arrows, there exists

a dashed arrow making the diagram commute.

Using the fact that HomsSet(δ∆
m, [∆2,D]) ∼= HomsSet(δ∆

m ×∆2,D), there is a morphism

f ′ = ev ◦ (f, id∆2) : δ∆m × ∆2 → D corresponding to f . Similarly, there is a morphism
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δ∆m [∆2,D]

∆m [Λ2
1,D]

f

i r

g

p

g′ = ev◦(g, idΛ2
1
) : ∆m×Λ2

1 → D corresponding to g. One can check that the commutativity

of the solid diagram is equivalent to the condition that the restrictions of f ′ and g′ to

δ∆m×Λ2
1 are equal, meaning the data of f ′ and g′ are equivalent to the data of some map

f ′′ : (δ∆m×∆2)
∐
δ∆m×Λ2

1
(∆m×Λ2

1)→ D. Thus we have shown that the data of the solid

commutative diagram is equivalent to the data of the map f ′′.

Now suppose that there exists some simplicial map p : ∆m → [∆2,D]. By the adjointness of

the product and internal Hom, we get a corresponding morphism p′ = ev ◦ (p, id∆2) : ∆m×

∆2 → D. The conditions that f = p ◦ i and g = r ◦ p are equivalent to the condition that

f ′′ = p′ ◦ i′ where i′ : (δ∆m ×∆2)
∐
δ∆m×Λ2

1
(∆m × Λ2

1) ↪→ ∆m ×∆2. Thus we have shown

that the existence of a solution to the original lifting problem is equivalent to a solution

to the lifting problem depicted below.

(δ∆m ×∆2)
∐
δ∆m×Λ2

1
(∆m × Λ2

1) D

∆m ×∆2 ∗

f ′′

i′
p′

By Lemma 4.1.0.5 there exists a solution to this lifting problem.

The converse of Theorem 4.1.0.6 holds as well, meaning that ∞-categories are exactly

those simplicial sets in which one can uniquely define composition of 1-morphisms up to

a contractible space of choices. One can find a proof in [Lur20, Tag 0079]

4.2 Kan Fibrations

Fiber bundles make precise the idea of one space being parametrized by another. How-

ever, if one is only interested in studying spaces up to homotopy equivalence, then the

requirement that all of the fibers be homeomorphic is excessive. Fibrations generalize
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fiber bundles by only requiring that the fibers are homotopic to each other. More con-

cretely, a fibration is a continuous map that satisfies the homotopy lifting property with

respect to any space.

If one is only interested in studying spaces up to weak homotopy equivalence, then even

this definition is too strict. Serre fibrations are continuous maps that have the homotopy

lifting property with respect to any CW-complex. Since for any space X, one can construct

a CW-complex Y and a map X → Y that is a weak homotopy equivalence, Serre fibrations

can be used to study spaces up to weak homotopy equivalence. In this section we will give

a simple proof that the study of Kan fibrations in ∞-categories encapsulates the study of

Serre fibrations.

Definition 4.2.0.1. A map f : E → B is a Serre fibration if it has the homotopy lifting

property with respect to every CW-complex. That is, for any CW-complex X, and any

commutative diagram indicated by the solid arrows, there exists a morphism indicated by

the dashed arrow which makes the diagram commute.

X E

X × I B

X×{0} f

Because CW-complexes are colimits of disks of various dimensions, one can show that only

requiring the homotopy lifting property with respect to any closed disk gives an equivalent

definition for Serre fibrations. Since |Λni | ∼= Dn−1 and |∆n| ∼= Dn ∼= Dn−1 × I, we can

define Serre fibrations as maps which have the homotopy lifting property with respect

to all inclusions |Λni | ↪→ |∆n|. That is, for any commutative diagram indicated by the

solid morphisms, there exists a morphism indicated by the dashed morphism making the

diagram commute.

|Λni | E

|∆n| B

f

By the adjointness of the singular and geometric realization functors, applying the singular
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functor to a Serre fibration gives a Kan fibration. In other words (or rather diagrams), if

f : E → Y is a Serre fibration, then there exists a dashed morphism making the following

diagram commute.

Λni Sing(E)

∆n Sing(B)

Sing(f)

Thus the study of Kan fibrations of∞-categories encapsulates the study of Serre fibrations

of topological spaces.



Chapter 5

Conclusion

The goal of this project was to show that our definition of an∞-category models the notion

of a category that has morphisms of degree n between morphisms of degree n− 1, for all

integers n ≥ 1. This allows us to never consider the equality of objects or morphisms and

instead only consider if there is an isomorphism of degree n + 1 between two morphisms

of degree n.

By considering the singular functor, we showed that the study of Kan complexes, which

are a particular type of ∞-category, is equivalent to the study of the homotopy theory

of spaces. We also showed that the nerve is fully faithful, meaning that the study of

∞-categories encapsulates the study of ordinary categories.

As a brief example of the utility of ∞-category theory, we considered two different types

of fibrations. Trivial Kan fibrations were used to show that the composition of morphisms

in an ∞-category is unique up to a contractible space of choices. In addition, we noted

that converse is true, meaning that ∞-categories are exactly those simplicial sets where

composition is uniquely defined up to a contractible space of choices. Our discussion

around Serre fibrations gave an example of how the study of homotopy theory translates

to the study of ∞-category theory.

Further Readings

• Although Chapter 3 generalized many categorical constructions to the setting of

∞-categories, a notable omission is the ∞-category analogue of limits and colimits,

which was left out for brevity. More information can be found in 1.2.13 of [Lur06].

58
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• In this project we explored only two examples of ∞-categories: the singular sets of

spaces, and the nerves of categories. However, there are many other useful examples

of∞-categories. A discussion of some of these examples can be found in [Lur20, Tag

007J].

• There are other approaches to higher category theory. In this project we considered

an approach based on simplicial sets, but another common approach is based on

topological categories. These two approaches are in fact equivalent. For the definition

of a topological category as well as a proof of this equivalence, one can consult 1.1.3

of [Lur06].

• An important area of research in higher category theory regards translating proofs

from one model to another. For instance, [RV19] shows the equivalence of certain

basic constructions between various models for higher categories. There are also

various efforts to formulate a truly model-independent approach to higher category

theory. An intuitive explanation of the goals of such an approach can be found in

the lecture [Ras].
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