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0 Introduction

These are my notes for Further Group Theory, taught by Dr. Vaibhav Gadre. The topics
and their ordering generally follow the book Groups, Graphs, and Trees by John Meier.

If you find any errors please tell me (or email me at asnadiga@gmail.com).

0.1 Notation

1 Cayley’s Theorems

In this course we often consider symetries of some object. If X is a mathematical object
then we use Sym(X) to denote all bijections form X to X that preserve some structure.
For example if X is the set [n] = {1, 2, ..., n} then Sym(X) is the symmetric group of order
n, denoted Symn.

1.1 Cayley’s “Basic” Theorem

Definition 1.1.1
An action of a group G on a set X is a group homomorphism from G to Sym(x).
Equivalently,its a map from G×X → X such that

1. e · x = x, for all x ∈ X; and
2. (gh) · x = g · (h · x) for all g, h ∈ G and x ∈ X.

We denote ”G acts on X“by Gy X. The associated homomorphism is a representation of
G. If the representation if injective then it is faithful.

For this course all group actions are on the left, this will be important later when defining
Cayley graphs.

Theorem 1.1.2: Cayley’s Theorem
Every group can be faithfully represented as a group of permutations

Proof. We can view a group G as acting ”on its own elements”, meaning that each
element of G can be viewed as a permutation of the elements of G. Specifically, the
permutation associated to and g ∈ G is πg(h) = gh for all h ∈ G. This clearly must be
a perumation since gh = gh′ would imply that h = h′. Thus we have a map g 7→ πg ∈
Sym(G).
It is easy to see that this mapping is a group homomorphism, so all that is left to check is
that this representation if faithful. To do this, note that the kernel of this homomorphism
is only the identity element.

1.2 Graphs

Definition 1.2.1
A graph Γ consists of a set of vertices V (Γ) and a set of edges E(Γ), where each edge
e is associated to a pair of vertices, Ends(e) = {u, v} ∈ V
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Note that there can be multiple edges between two vertices and an edge e can be a loop
that where Ends(e) = {v}. A graph with out multiple edges or loops is a simple graph.
The valence of a vertex is the number of edges that contain it, and a graph is locally finite
if the valence of every vertex is finite.

A path is a set of alternating vertices and edges {v0, e1, v1, ..., vn−1, en, vn} where Ends(ei) =
{vi−1, vi}. A graph is connected if any two vertices can be joined by a path. A backtrack
is a path of the form {v, e, w, e, v}. A path is reduced if it contains no backtracks. A cycle
is a path that begins and ends at the same point. A tree is a connected graph that has no
cycles.

Proposition 1.2.2
The following conditions on a connected graph Γ are equivalent:

1. Γ is a tree.
2. Given any two vertices v, w there is a unique reduced edge path from v to w.
3. For every edge e removing e disconnects the graph.
4. IfΓ is finite, then |V (Γ)| = |E(Γ)|+ 1.

Proof. Left as an exercise.

Definition 1.2.3
A regular m-tree is a tree where every vertex has valance m. For a given m this tree
is unique and denoted Tm. A graph is a biregular tree if it is bipartite and all of the
vertices in one class have valance m and all vertices in the other class have valance
n. Given m and n there is a unique biregular tree Tm,n

Definition 1.2.4
A directed graph is a graph where each edge is an ordered pair of vertices, meaning
that edges have a begining and an end.

A directed graph is connected when its underlying undirected graph is, we do not consider
directed connectedness.

Ther can also be decorations on the graph, such as a function V (Γ) → L where L is some
set of labels.

1.3 Symmetry Groups of Graphs

Definition 1.3.1
A symmetry of a graph Γ is a bijection α that takes vertices to vertices and edges
to edges such that if for some edge e, Ends(e) = {v, w}, then Ends(α(e)) =
{α(v), α(w)}. The symmetry group of Γ is the collection of all its symmetries, where
the group operation is composition, denoted Sym(Γ).
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Example 1.3.2
The symmetry group of the complete graph Kn is isomorphic to Symn

Definition 1.3.3
Let G be a subgroup of Sym(Γ). We say that G is vertex transitive if for any two
vertices v, v′ there is some g ∈ G such that g(v) = v′. Similarly, G is edge transitive
if for any two edges e, e′ there is some g ∈ G such that g(e) = e′. A flag is a pair
(v, e) where v ∈ Ends(e). G is flag transitive if for any two flags (v, e), (v′, e′) there
is some g ∈ G such that g(v) = v′ and g(e) = e′.

We can further say that G is simply transitive on the vertices (or edges or flags) if it is
vertex (or edge or flag) transitive and for any two v, v′ there is a unique g ∈ G such that
g(v) = v′ (respectively e, e′, g(e) = e′, etc).

Example 1.3.4
The symmetry group of the complete bipartite graph Km,n is not vertex transitive if
for m 6= n. This is because symmetries preserve valance so vertices of one class can
never be taken to vertices of another class under a symmetry.

Lemma 1.3.5
If Γ is a directed graph then the collection of all symmetries that preserve every edges
direction form a subgroup of Sym(Γ).

Proof. Clearly this collection is a subset of Sym(Γ), so we must show that it is closed
under composition and contains all inverses. If g and h preserve edge directions then so
do their inverses and gh.

An almost identical proof shows the following.

Lemma 1.3.6
If the edges and/or the vertices of a graph Γ are labeled then the collection of all
symmetries that preserve the labeling form a subgroup of Sym(Γ).

Definition 1.3.7
If a graph Γ comes with certain decorations, then let Sym+(Γ) be the subgroup of
Sym(Γ) that preserve all decorations.

1.4 Orbits and Stabilizers

Definition 1.4.1
Let a group G act on X. If x ∈ X then the stabilizer of x is

Stab(x) = {g ∈ G | g · x = x}.
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For a given element x ∈ X, the identity element of G fixes x, and for any g, h ∈ G that fix
x, so do their inverses and gh. Thus, for any x ∈ X Stab(x) is a subgroup of G.

Example 1.4.2
Dn is the group of symmetries of a regular n-gon. If x is a vertex of this n-gon, then
there are two elements that fix x: the identity, and the reflection over the axis that
contains x. Thus Stab(x) ≈ Z2.
On the other hand, if x is the center of the n-gon then Stab(x) ≈ Dn.

Example 1.4.3
If Symn y [n] then Stab(i) ≈ Symn−1. This is because we can take all permutations
of the n− 1 elements that are not i and this forms Stab(i).

Definition 1.4.4
Let Gy X. The orbit of some element x ∈ X is

Orb(x) = {x ∈ X | x = g · xfor some g ∈ G}

For some Gy X, pick a fixed x. Then g ·x = h ·x if and only if gh−1 ·x = x, which is equiv-
alent to gh−1 ∈ Stab(x). Thus g ·x = h ·x if and only if the left cosets gStab(x) = hStan(x).
This means that the mapping g · x ↔ gStab(x) is a well defined bijective correspondence
between the orbit of x and the left cosets of its stabilizer. This gives us the following.

Theorem 1.4.5: Orbit-Stabilizer Theorem
Let G be any finite group acting on X. Then for any x ∈ X,

|G| = |Stab(x)| · |Orb(x)|.

Proof. The order of G is the order of Stab(x) times the index of Stab(x) in G. We have
shown that the index of Stab(x) in G (the number of left cosets) is the order of the orbit
of x.

This theorem, among other things, shows that if the stabilizer of an element is trivial, then
the elements of its orbit correspond to group elements.

1.5 Generating Sets

Definition 1.5.1
If G is a group and S is a subset of its elements, then S generates G if every element
of G can be expressed as a product of elements of S and inverses of elements of S. A
group is finitely generated if it has a finite generating set.

The generating set for a group is not unique. In fact even the smallest generating set is not
unique as seen the the example below.
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Example 1.5.2
in Dn any reflection along with the “minimal” rotation by 2π/n is a generating set.
Any two adjacent reflections are also a generating set.

We can also note that every finite group must be finitely generated because the set of all
elements forms a generating set.

Example 1.5.3
The rational numbers are not finitely generated. We assume that the operation is
addition.
Suppose for contradiction that they are, and S = {n1/d1, n2/d2, ..., nk/dk} is a finite
generating set. Then every element generated by this set can be expressed as some
n/d where d = LCM(d1, d2, ..., dk). But obviously not every element of Q can be
expressed in this way.

1.6 Cayley Graphs

Theorem 1.6.1: Cayley’s Better Theorem
Every finitely generated group can be faithfully represented as a symmetry group of
a connected, directed, locally finite graph.

Proof. For a given group G, we need a graph such that G can be faithfully represented
as a symmetry group of that graph. Instead of looking for one, we will construct one,
ΓG,S. The vertices of ΓG,S correspond to the elements of G, and are denoted as vg for
g ∈ G. There is an edge from g to g′ if there is some s ∈ S such that gs = g′. Thus
every edge corresponds to right multiplication of its initial vertex by a generator.
To show that GGG,S is connected, note that since S generates G, there is a path from
every vertex to the vertex corresponding to the identity element. Thus there is a path
from any given vertex to any other vertex. The valance of every vertex will clearly be
finite since S is finite, so ΓG,S is locally finite.
The proof of Cayley’s basic theorem described the group action of G on the vertices
ΓG,S : g ·vh 7→ vgh. In order for this to be a symmetry of GGG,S , this action must extend
to an action on the edges. We see that if there is an edge e from vh1

to vh2
then there is

some s ∈ S such that h1s = h2. If we take the action of g on these vertices we see that
g · vh1 = vgh1 and g · vh2 = vgh2 = vgh1s, meaning there is an edge between the images
of the two vertices. Thus we can define an action of G on the edges as well.

Definition 1.6.2
Given a group G and a finite generating set S, we call ΓG,S the Cayley graph of G
with respect to S.

There is an obvious way to label and the edges of ΓG,S : if an edge is from vg to vgs label
it as s. The action of G on ΓG,S preserves the orientation and labeling so we conclude that
G < Sym+(ΓG,S)
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1.6.1 Cayley Graphs of Dihedral Groups

Dihedral groups can be generated by a set of two adjacent reflections or by a set consisting
of a minimal rotation and a refelction. These different generating sets give very different
looking Cayley graphs.

One trick to generate the Cayley graph with respect to either of these two generating sets is as
follows. Choose a point in “general position” the regular n-gon, meaning that its stabilizer
is trivial. This will imply that the elements of the orbit of this point will correspond to
elements of Dn. By applying the actions of the elements generating set repeatedly to the
point and drawing the corresponding edges, you will draw the Cayley graph.

This trick can be used to find the Cayley graphs for other groups that represent some
symmetries of a geometric object. For example S4 can represent the symmetries of a tetra-
hedron and picking a point on the boundary of the tetrahedron that has a trivial stabilizer
can reveal te cayley graph of S4.

1.7 Symmetries of Cayley Graphs

Theorem 1.7.1
Let ΓG,S be the Cayley Graph of G with respect to the finite generating set S.
Consider ΓG,S to be decorated with directions on its edges and labeling of ites edges,
corresponding to the generating set S. Then Sym+(ΓG,S) ≈ G.

Proof. The left action of G on ΓG,s defined in the proof of Cayley’s “better” theorem
shows that there is an injective homomorphism G → Sym(ΓG,S). Since the edges are
defined through right multiplication and this group action is a left action, the edge
labeling is preserved by the group action. Thus we have that we have an injective
homomorphism G→ Sym+(ΓG,S).
To show that this homomorphism in surjective, consider an γ ∈ Sym+(ΓG,S). For any
element g ∈ G let vg be the corresponding vertex in ΓG,S . Then there is some g such
that γ(ve) = vg. Then if we consider g as a symmetry of ΓG,S , g−1γ ∈ Sym()+(ΓG,S).
This symmetry fixes ve and fixes all of the edges leaving or going to ve since symmetries
in Sym()+(ΓG,S) preserve the labeling and orientation of edges. This means that g−1γ
fixes all of the vertices adjacent to ve, and following a similar argument, it fixes all of
the vertices adjacent to those vertices. Thus we get that g−1γ is the identity which
means that g = γ. Thus we conclude that the homomorphism that we had from G to
Sym()+(ΓG,S) is an isomorphism.

1.8 Fundamental Domains and Generating Sets

In what follows we think of graphs as geometric objects consisting of unit intervals joined
together at vertices. Thus we can consider closed subsets of a graph.

Lemma 1.8.1
If a group G acts on a connected graph Γ then there is a subset F ⊂ Γ such that

1. F is closed,
2. the set {g · F | g ∈ G} covers Γ, and
3. no proper subsest of F satisfies properties (1) and (2).
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Proof. FINISH ME LATER

ALSO INSERT SOME EXAMPLES

Theorem 1.8.2
Let G act on a connected graph Γ with fundamental domain F . Then the set of
elements

S = {g ∈ G | g 6= e and g · F ∩ F 6= ∅}

is a generating set for G.

Proof. Pick and g ∈ G the goal is to show that g can be expressed as a combination of
elements from S. Pick any v ∈ F and pick some path p connecting v to g · v. Then let
{F , g1F , ..., gnF = gF} be a finite sequence of images of F such that

1. the entire path p is contained in ∪giF and
2. giF ∩ gi+1F 6= ∅ where g0 is the identity.

We must show that such a sequence exists. The first condition can be met because G · F
covers all of Γ. The second condition can be met as a result of F being closed.
Since F∩g1F 6= ∅, we know that g1 ∈ S by definition. Since g1F∩g2F 6= ∅, F∩g−11 g2F 6=
∅, so g−11 g2 ∈ S. Thus g2 = g1(g−11 g2) is a product of elements from S. Continuing in
this way shows that g can be written as a product of elements from S.

Theorem 1.8.3
Let G y Γ with the fundamental domain F . Further assume that if g · = F then
g = e. If H < G and a fundamental domain for the induced action H y Γ is a union
of n copies of F , (n ∈ N ∪∞), then the index of H in G is n.

Proof. Since we assumed that the only element that fixes F is the identity, there is some
point x ∈ F that is moved freely by G. This means that there is a bijiection between the
elements of Orb(x) and the elements of G. We can explicity write out the fundamental
domain for H y Γ as

FH = ∪ni=1giF ,

where n ∈ N∪∞, and the gi are distinct elements of G. Then since FH is a fundamental
domain, for all g · x there is some h ∈ H such that g · x ∈ hFH . This means that
g · x ∈ (hgi)F for some gi. Since any gx is contained in some hgiF and the elements of
the orbit of x correspond to the elements of G, we get that G = ∪Hgi. This means that
the set of gi contains all of the coset representatives of H in G, and now we will show
that no two gi represent the same coset.
Suppose for contradiction that Hgi = Hgj for some distinct gi, gj . Then gig

−1
j ∈ H.

Now consider F ′H = FH \ gjF . We claim that this still covers Γ through the actions of
H. The situation that we must check is when some element of Γ y ∈ hgjF , for h ∈ H. In
this case for some h′ ∈ H, y ∈ h′(gig−1j gjF = h′giF ⊂ h′F ′H , proving that y is covered
by F ′H . But this contradicts FH being a fundamental domain so we conclude that for
any distinct gi, gj , Hgi 6= Hgj , meaning that the set of gi correspond to the right cosets
of H in G, meaning that the order of H in G is n.
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1.9 Words and Paths

Given a set S, a finite sequence of elements of S (possibly with repetition) is called a word.
The set S is called the alphabet. The collection of all words, including the empty word, is
denoted S∗.

S−1 denotes the set of all formal inverses of elements in S. Then we can also make the set
of words (S ∪ S−1)∗. We can take formal inverses of words of this form in the usual way
(x1x2...xn)−1 = x−1n ...x−12 x−11 .

Given any word ω ∈ (S∪S−1)∗, there is an associated path in the directed and edge labeled
Cayley graph ΓG,S . Similarly, there is a word for every finite edge path in ΓG,S .

This means that we can think of the Cayley graph ΓG,S as a “calculator” for G. More
formally, if we have group elements g, h and words ωg, ωh that correspond to g, h, then we
can find gh by starting at the vertex ve, following the path corresponding to ωg, and then
from that point follow the path corresponding to ωh. This will result in the vertex vgh that
corresponds to gh.

2 Groups Acting on Trees

2.1 Free Groups

Definition 2.1.1
Let S = {x1, ..., xn} be a set of elements in a group G. A word ω ∈ {S ∪ S∗} is
said to be freely reduced if it does not contain a subword consisting of an element
adjacent to its formal inverse. The group G is the free group with basis S if S is a set
of generators for G and no freely reduced word or its inverse represents the identity
element. The rank of a free group with basis S is the number of elements in S. Fn is
the free group of rank n.

There are also free groups of infinite order, but we will not consider them for now.

Theorem 2.1.2
For any n ∈ N there is a free group of rank n.

Proof. (Sketch)
Let S = {x1, ..., xn} be a set of n distinct symbols. Then we define the equivalence
relation on all words in {S ∪ S∗} induced by

a1 · · · ai−1aia−1i ai+1 · · · ak ∼ a1 · · · ai−1ai+1 · · · ak

where adjacent pairs of elements that are each-others inverses get cancelled. Then the
elements of the group Fn are the equivalence classes of words. It is easy to check that
this defines a group structure. The reason that we could not just let Fn be the set of
freely reduced words is that the product of two freely reduced words may not be freely
reduced.
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Proposition 2.1.3
The Cayley graph of F2 with respect to {x, y} is an oriented version of T4.

Proof. Since F2 is generated by two elements, every vertex in the Cayley graph will have
valance 4. Recall that there is a correspondence between freely reduced words and paths
in a Cayley graph. Since no non empty freely reduced word is the identity element, we
can deduce that no path is a cycle in the Cayley graph. Thus we know that the Cayley
graph is a tree and that every vertex has valance 4, so it must be an oriented version of
T4.

We know that F2 acts on T4. Specifically, we can view the action of x as a “shift to the
right” of the graph, while the action of y is “a vertical shift upwards”.

Note again that visualizing the action of an element of a group on a Cayley graph is not
the same as following the path from the identity to that element in the Cayley graph. The
action is a right action, while paths are determined through left multiplication.

2.1.1 Free Groups as Subgroups

The general approach for finding free groups as subgroups is often related to the Ping-Pong
Lemma. This lemma can be thought of more as a guiding approach for finding free groups
inside of other groups. In fact, in the examples, we do not make specific reference to the
lemma, but it is clear where it is used.

Lemma 2.1.4 (Ping Pong Lemma)
Let G be a group that acts on X. and let S be a symmetric set of generators (the
inverse of an element in S is in S). For each s ∈ S, let Xs be a subset of X, and let
p be a point in X/ ∪s∈S Xs. Then if

1. s(p) ∈ Xs for all s ∈ S, and
2. s(Xt) is a proper subset of Xs for each t 6= s−1,

Then G is a free group with basis S

Proof. Suppose the conditions of the lemma. Then we want to show that any freely
reduced word in S∗ does not represent the identity. So let w1...wn be such a word. Then
if we pick some p /∈ Xw−1

n
then we get that wn(p) ∈ Xwn

. Then we can see that

wn−1(p) ∈ Xwn

(wn−1wn)(p) ∈ Xwn−1
,

...,

(w1...wn)(p) ∈ Xw1
.

Since p /∈ Xw1 this means that (w1...wn)(p) 6= p which means that the word can not
represent the identity. Thus no freely reduced word represents the identity.

Proposition 2.1.5
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Consider SL2(Z), the group of two-by-two matrices with integer entries and determi-

nant 1. The subgroup of SL2(Z) generated by S =

{[
1 0
2 1

]
,

[
1 2
0 1

]}
is isomprhif

to F2.

Proof. We could try to show that no reduced word made with elements of S and S−1

is equal to the identity matrix directly, but this would be quite difficult. Instead we

will do this using the action of SL2(Z) on the plane. Let l =

[
1 0
2 1

]
, and r =

[
1 2
0 1

]
.

We want to show that any freely reduced word in {l, l−1, r, r−1} does not represent the
identity element. We partition the plane into regions, each of which are associated to a
generator, as shown below.
I would include a figure from the book but I am scared on copyright stuff. It can be
found on page 60 of the book.
Through computations, one can show that if w ∈ {l, l−1, r, r−1}, then w · Xy ⊂ Xw if
y 6= w−1. This containment is always proper. Now let ω be a freely reduced word. To
show that ω is not the identity, it suffices to show that ω acts non-trivially on the plane.
Since ω is freely reduced, we can apply the containment property one element at a time:

ω ·Xwn
= w1w2 · · ·wn ·Xwn

⊂ w1w2 · · ·wn−1 ·Xwn

⊂ w1w2 · · ·wn−2 ·Xwn−1
⊂ · · · ⊂ Xw1

This means that ω · XWn
is a proper subset of Xw1

, which makes it impossible that
ω ·XWn

= Xwn
. This means that ω is not the identity element.

Proposition 2.1.6
There is a subgroup F2 that is a free group of rank n for any n ∈ N.

Proof. The proof has to do with considering certain forward trees. A forward tree is
defined by the word that takes a fixed vertex to the beginning of that tree. Working
in the Cayley graph of F2 with respect to {a, b} (which is a tree), if we choose words
carefully, then we can apply the ping pong lemma to find a free group of rank n as a
subgroup of

2.2 Free Group Homomorphisms and Group Presentations

Theorem 2.2.1
Let G be a group and let {g1, ..., gn} be a list of some elements. Then let S =
{x1, ..., xn} be a basis for the free group Fn. Then there is a homomorphism φ :
Fn → G such that φ(xi) = gi.

Proof. Let w be a reduced word in {S ∪ S−1}∗. Then w = w1...wk where wi ∈ S ∪
S−1. Then we can define φ(x−1i ) = g−i 1. And define φ(w1...wn) = φ(w1)...φ(wn).
Recall that elements of Fn are actually equivalence classes of words, so in order for
this homomorphism to be well defined it must be constant on these equivalence classes.
Clearly if there are two consecutive letters in a word that are each others formal inverses,
then after applying φ these elements will cancel out. Thus φ is constant on equivalence

12
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classes as desired. Then it is simple to check that φ(w)−1 = φ(w) and that φ(w1w2) =
φ(w1)φ(w2), which shows that it is a homomorphism.

Corollary 2.2.2
Any two free groups of rank n are isomorphic.

Proof. Let G be a free group of rank n with basis {x1, ..., xn} and let H be a fere group
of rank n with basis {y1, ..., yn}. Then we can make a homomorphism φ : G → H such
that φ(xi) = yi. And ψ : G→ H such that ψ(yi) = xi. This means that the composition
of the two in any order is the identity homomorphism in the appropriate group, which
means that they are each others inverses. Thus they are invertible and bijective, meaning
that they are isomorphisms.

Corollary 2.2.3
If a group G is generated by n elements then it is isomorphic to a quotient group of
Fn.

Proof. Let φ : Fn → G as in the theorem where the gi are the generating elements.
Then the image of φ is G. Thus we can apply the first isomorphism theorem to get that
Fn/Ker(φ) ∼= G

.

2.2.1 Group Presentations

Definition 2.2.4
Let G be a group with generators {g1, ...gn}, and let {x1, ..., xn} be a basis for a free
group of rank n. Then we know that there is a homomorphism from φ : Fn → G such
that φ(xi) = g1. Any word w such that φ(w) = 1G is a relation.

For example if a and b generate Z⊕ Z then aba−1b−1 is a relation.

If φ : Fn → G as above, then a subset R ⊂ Ker(φ) is said to be a set of defining relations
if the smallest normal subgroup of Fn that contains R is Ker(φ). Note that the smallest
normal subgroup containing R must contain R−1 and all conjugates of the form wrw−1

where r ∈ R ∪ R−1 and w ∈ Fn. In fact the finite product of all conjugates of elements
of R ∪ R−1 is the smallest normal subgroup containing R. Thus if R is a defining set of
relation then every element of the kernel can be expressed as a finite product of conjugates
of R ∪ R−1. A group G is said to be finitely presented if there is a finite set of defining
relations {w1, ...wk}. Then we can present the group as G = 〈g1, ..., gn | w1, ..., w〉.

2.3 Free Group Actions on Trees

Theorem 2.3.1
A group G is free if and only if it acts freely on a tree.

Proof. Can be found in the book. Not worth writing up.

13
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Corollary 2.3.2 (Nielsen-Schreir Theorem)
Every subgroup of a free group is a free group.

Proof. Let Fn be the free group of rank n with basis S = {x1, ..., xn}. Then Fn acts
freely on the Cayley graph ΓFn,S . Then so does any subgroup of Fn. By the theorem,
this means that the subgroup is a free group.

2.4 The Group Z3 ∗ Z4

This is an informal introduction to the idea of free products. The technical definitions are
in the next subsection.

Consider the tree T3,4, depicted with black vertices (of valance 4) and white vertices (of
valance 3) below. If we pick a distinguished black vertex and an adjacent distinguished
white vertex, we can consider the group of symmetries generated by a and b, where a is a
rotation about the black vertex and b is a rotation about the white vertex. To describe the
action of this group on T3,4 more concretely, we introduce a labeling of the vertices in the
following way.

FIGURE IN PAGE 74

Let the distinguished black vertex be labeled by ∅. Then label the vertices adjacent to this
with North, East, South, and West in a clockwise order. Then each of these vertices will be
adjacent to two vertices other than ∅. We can give a labeling of left or right to each of them.
These vertices will in turn be adjacent to 4 vertices. If we assumed that the ”direction” that
we came to such a vertex is East, then we can label the adjacent vertices. This is depicted
below.

FIGURE IN PAGE 74

Now we can explicitly write out the action of a. a fixes ∅. Any other vertex starts with
either a N, E, S, or W. a will cycle the first letter of the labeling (taking labels starting with
E to labels starting with E, labels starting with E to labels starting with S, etc.).

The action of b is a bit more complicated. b fixes E. All other labeling of vertices start with
∅, EL, or ER. b cycles the starting of the vertices (vertices that start with ∅ to vertices that
start with EL, vertices that start with EL to vertices that start with ER, and vertices that
start with ER to vertices that start with ∅).

The group G generated by a and b can be referred to as the free product Z3 ∗ Z4. This is
because the order of b is 3, and the order of a is 4.

2.5 Free Product of Groups

To describe the free product of groups A and B, denoted A ∗ B, we first start with an
alphabet of letters from A and B, {A ∪B}.

Definition 2.5.1
A word w = x1x2 · · ·xn ∈ {A ∪B}∗ is freely reduced if:

1. no xi = eA or eB , and
2. when xi ∈ A, xi+1 /∈ A, and if xi ∈ B then xi+1 /∈ B.

14
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We would like to turn the set of freely reduced words into a group under the operation of
concatenation. However, the concatenation of two freely reduced words may not be freely
reduced. To deal with this we introduce an equivalence relation on {A∪B}∗ that is generated
by:

1. wexw
′ ∼ ww′ if ex = eA or eB , and

2. wabw′ ∼ wcw′ if ab = c in either A or B.

Definition 2.5.2
A ∗ B is the group whose elements are equivalence classes of elements of {A ∪ B}.
The operation is defined by taking the equivalence class of the concatenation of rep-
resentatives of equivalence classes, i.e. [w1][w2] = [w1w2].

It is important to check that this is well defined (meaning that if different representatives
of equivalence classes are chosen then the result of the operation does not change).

Theorem 2.5.3
Each equivalence class [w] contains exactly one reduced word of {A ∪B}∗.

Proof. The proof is gross and breaks into many cases. First we show that every word
is equivalent to a freely reduced word. Then we prove that two different freely reduced
words are not equivalent. This proves the theorem. If you wish you can find the proof
in the book.

Theorem 2.5.4
Every free product of groups A ∗ B can be realized as a group of symmetries of a
bi-regular tree T , and the fundamental domain of this action is a single edge and its
two vertices. If A and B are finite then the tree will be T|A|,|B|.

Proof. We will first construct a graph which admits an action of A ∗ B. We will then
show that the fundamental domain of this action is an edge with its vertices. Then we
show that the graph is actually a tree, and finally we prove the assertion about A and
B being finite.
Let the vertices V (T ) correspond to the left cosets gA and gB, i.e. every vertex can be
labeled as vgA or vgB . The edges of T will correspond to the elements, so any g ∈ A ∗B
corresponds to the edge eg. Note that this will make the edge associated to e ∈ A ∗B be
ee. :( We define Ends(eg) = {vgA, vgB}. This means that two edges eg and gh intersect
if and only if gA = hA or gB = hB, which happens if and only if g−1h ∈ A or g−1h ∈ B.
We can see that T has a bipartite structure by noting that there are two classes of
vertices, those of the form vgA and those of the form vgB . By the definition of the edges,
vertices of one class are only adjacent to vertices of the other class.
The action of A ∗ B on T is induced by the left action of A ∗ B on itself and its cosets.
Specifically, gvhA = vghA and gvgB = vghB . This will induce that geh = egh.
To find the fundamental domain, we use three facts:

1. the group action preserves the class of vertices,
2. edges only go between vertices of different classes, and
3. the action is “vertex transitive with in classes”.

15
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Thus the fundamental domain must contain exactly one vertex of each class. Further-
more, the fundamental domain must contain a full edge (if the fundamental domain
contained just part of one edge, then there would be no way to cover the rest of the edge
because symmetries preserve the bipartite structure). Thus the smallest fundamental
domain would be an edge and its ends.
To prove that T is a tree we need to prove that it is connected and that it has no circuits.
To see that it is connected, consider and g ∈ A ∗ B. Then g = [w] for some reduced
w = x1x2 · · ·xn ∈ {A ∪ B}∗. Assume that x1 ∈ A (very similar arguments will hold for
x1 ∈ B). Then ee ∩ ex1

= vA, ex1
∩ ex1x2

= vx1B , ex1x2
∩ ex1x2x3

= vx1x2A, and so on.
Then we get that {ee, ex1 , ex1x2 , · · · , ex1x2···xn is an edge path from ee to eg. Thus every
edge is connected to the edge ee and the graph T is connected.
To prove that T is a tree, suppose for contradiction that there is some circuit. We can
use the group actio nof A ∗ B to move this circuit to one that begins and ends at ee.
So suppose that there is some circuit ee, e2, e2, . · · · , en, ee}. Then e1 = ex1

for some
x1 ∈ A or B. Suppose that x1 is in A. Then e2 = ex1x2 for some x2 ∈ B, and in general
ek = ex1x2···xk

where x1x2 · · ·xk is some freely reduced word in {A∪B}. Since the edge
path is a circuit, ex1···xn

∩ ee 6= ∅. Specifically, this intersection is either vA or vB . This
means that [x1x2 · · ·xn] = [x] for some x ∈ A ∪ B. But now we have found two freely
reduced words in one equivalence class, which contradicts the previous theorem. Thus
T must be free of circuits, and is a tree.
Now suppose that A and B are finite. Then vgA ∈ Ends(eh) if and only if h ∈ gA. This
means that the number of edges that contain a vertex of the form vgA is the same as
the number of elements of gA, which is just |A|. The same arguments hold for vertices
of the form vgB .

In the example in the previous subsection, we made use of the notation of the previous
proof. To see this simple perform the replacements

E 7→ e, S 7→ a,W 7→ a2, N 7→ a3, L 7→ b, R 7→ b2.

We can actually illustrate the proof geometrically in this case. The cosets gZ4 correspond
to sets of 4 white vertices that all are adjacent to one white vertex. The cosets of gZ3

correspond to sets of 3 white vertices that are all adjacent to one black vertex. ee will be
the edge joining the vertex fixed by the action of a to the vertex that is fixed by the action of
b (∅ and E, respectively). Then the resulting graph will be connected (because we can apply
a series of rotations to transform ee to an arbitrary edge), and we can also see that the graph
must be a tree because it would be impossible to have a reduced non-trivial composition of
rotations about ∅ and rotations about E that would be the identity transformation.

FINISH SUBSECTION FROM BOOK HERE

2.6 Free Products of Finite Groups are Virtually Free

DO THIS SECTION!!!!
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2.7 Finite Groups Acting on Trees

Definition 2.7.1
We say that a grop G has Serre’s Property FA if whenever there is an action of G on
a tree T , there is a fixed point x ∈ T (StabG(x) = G).

Theorem 2.7.2
All finite groups have Serre’s Property FA.

Proof. Let G bea group and T be a tree and G y T a group action of G on T . Then
let v be any vertex of T . Consider the orbit of v, O = {g · v | g ∈ G}. Then let TO be
the subtree formed by taking the union of all vertices and edges in the minimal-length
paths containing elements of O.
Since G is finite, O is finite, and so is TO. This will mean that there are some leaves
(vertices of valance 1) in this subtree. We can also see that G clearly acts on TO. This
means that G takes leaves of the subtree to leaves, and non-leaves to non-leaves. So we
can form the subsubtree T 1 which is formed by removing all of the leaves and incident
edges from TO, and G will act on T 1. We can continue to do this for T 2, T 3, and so
on. Since TO has finitely many vertices and we are removing vertices at each step, this
process will eventually result in some T i that is either juts one vertex or an edge and its
vertices.
If T i is just one vertex, then since G acts on T i, G fixes this vertex. If T i is an edge and
its vertices, then the action of and g ∈ G must either do nothing to T i or must swap the
vertices of T i. Either way, the midpoint of the edge is fixed by the action of G.

In the proof we saw that either a vertex or the midpoint of an edge is fixed by the action
of a finite group on a tree. If the tree has a bipartite structure, then the second case is
impossible. Thus we get

Corollary 2.7.3
If a finite group G acts on a bipartite tree T , then G fixes a vertex of T .

Corollary 2.7.4
If H is a finite subgroup of A ∗B then H is conjugate to a subgroup of A or of B.

Proof. In the proof of theorem 2.5.4 we constructed a bipartite tree that A ∗B acts on.
If H is a finite subgroup then it fixes a vertex v of this tree, meaning that H is contained
in the stabA∗B(v). The stabilizer of vertices was shown to be conjugates of A or of B, so
H is contained in a conjugate of A or of B. I THINK that subgroups of the conjugates
are conjugates of the subgroups, which proves the assertion.
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