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1 Introduction to Topological Knots

What is a knot? Let us step inside the vast universe of R3. Before we embark on
this adventure, let us reflect on where we are coming from. We see knots all over
our world. When you tie your shoes, that is a knot. When your headphones
are tangled, that is a knot. When Ani ties a knot, that is a knot. But are
these actually knots or not? The land of topology says no. Imagine a world
where your string is attached together at the ends. Now untying your shoes
will prove much more difficult; perhaps even impossible. This motivates the
following definition.

Definition 1. A topological knot is an embedding of a circle in R3.

In topology, we consider the ”string” to be infinitely thin and infinitely
stretchable. Two knots are equivalent if one can be deformed to the other by
stretching and twisting without creating any self-intersections or breaking the
string.

Definition 2. A knot is an unknot if it is equivalent to the planar circle. A
non-trivial knot is any knot that is not the unknot.

. We will often represent knots with two dimensional representations called
knot diagrams. See figure 1.

Definition 3. A knot diagram is a regular projection of a knot in which
crossing information is given by small gaps.

Knots are often classified based on their crossing number, which is the small-
est number of crossings a diagram of a knot can have. The crossing number is
an example of a knot invariant.

Definition 4. A knot invariant is some function associated with a given knot
that doesn’t change under any deformations.

It is possible that different knots may have the same value for a certain knot
invariant. For example, there are multiple distinct knots with 5 crossings. We
have several other characteristics to help us describe knots:
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Definition 5. If we choose a direction to follow through the knot then the knot
has an orientation.

Definition 6. A knot is invertible if it can be deformed to have reverse ori-
entation.

Definition 7. A knot is achiral or amphicheiral if it can be deformed to its
mirror image. We say a knot is chiral if it is not achiral.

Note that deforming a knot to its mirror image is the same as switching all
the crossings from over to under and vice versa.

Definition 8. A knot is reversible if it is invertible and chiral

We would like to represent the possible deformations of a knot in R3 using
just manipulations of the knot projection. Reidemeister moves allow give us
explicit rules for how we can manipulate a projection. There are three Reide-
meister moves. Any legal deformation of a knot in R3 can be represented a
sequence of Reidemeister moves in the knot diagram.

1.1 Trefoils

The simplest type of non trivial-knot is a trefoil, since it is the only type of knot
with only three crossings and there are no knots with only one or two crossings.

Theorem 1. Topological trefoils are reversible (invertible and chiral).

Figure 1: A left-handed trefoil (left) and a right-handed trefoil (right).

In other words,if we give a trefoil an orientation, we can deform it to have
reverse orientation. However, we cannot deform it to to its mirror image. Thus
there are actually two distinct types of trefoils, which we refer to as left-handed
and right-handed.

2 Introduction to Geometric Knots

2.1 Geometric Knots and Stick Numbers

There are many applications of knot theory. For example, there is evidence that
molecules of DNA sometimes form non-trivial knots, as shown in figure 2.
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Figure 2: A molecule of DNA forming a trefoil knot.

Unlike most structures found in nature, topological knots are infinitely thin
and infinitely stretchable. In order to understand certain applications of knot
theory, we may want a model with greater rigidity. This is one motivation for
the following definition.

Definition 9. A geometric knot is a polygon in R3, consisting of n straight
edges and no self-intersections.

Geometric knots are similar to topological knots, but with straight edges.
They are sometimes referred to as stick knots, since they resemble a collection
of sticks stuck together end to end. For the remainder of this paper, when we
say knot we will be referring to geometric knots.

Definition 10. A geometric knot is a geometric unknot if it can be deformed
to a regular planar polgyon without breaking, bending, or intersecting any of the
edges.

Definition 11. The minimal stick number of a topological knot is the small-
est number of edges required to realize the knot.

For example, to form a trefoil you need at least 6 edges, so the minimal stick
number of a trefoil is 6. The minimal stick number of the figure-eight knot is 7.
See figure 3.

Theorem 2. You need at least 6 edges to construct a non-trivial geometric
knot, and the only non-trival knot with 6 edges is the trefoil.

We ought to be careful when creating and reading knot diagrams. Figure
4 seems to show a non-trivial knot made using only 5 sticks. However, if we
carefully follow the edges we will notice that every edge rises up as it crosses
over another, but at no point do we come back down. Hence the picture is just
an optical illusion, and doesn’t represent an actually pentagon.

2.2 The space of Geometric Knots

Every geometric knot is a polygon in R3. We can represent any n-sided polygon
in R3 as a point in R3n by first choosing a distinguished vertex v1, called the
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Figure 3: A 6-sided trefoil (left) and a 7-sided figure-eight knot (right).

Figure 4: A deceptive 5 stick not knot.

root, and an orientation, and then listing the coordinates of the vertices starting
at the root and going in the direction of the orientation. We label the vertices
v1, v2, ...vn and the edges 12, 23, .., n1. Not every point in R3n represents a knot
because some of the points correspond to polygons with a pair of intersecting
edges. This motivates the following two definitions:

Definition 12. Geo(n) is the space of all geometric knots.

Definition 13. The discriminant of R3n,
∑n

, is the set of all polygons with
at least one pair of intersecting edges.

This gives us the subspace

Geo
(n) = R3n −

n∑
(1)

a 3n-dimensional manifold. We call two polygons geometrically equivalent if
one can be continuously deformed into the other while remaining an n-sided
polygon the entire time. We can formalize this using paths in Geo(n).

Definition 14. A path in Geo(n) is a continuous map from the interval [0, 1]

to Geo(n).
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To understand this definition, first note that if there is some point that is
very close to another in Geo(n), the first is a slightly deformed version of the sec-
ond. Thus, a continuous mapping h from [0,1] to Geo(n) represents continuously
changing the polygon h(0) until it reaches h(1).

Definition 15. If there is a path between two points of Geo(n), then we say that
the polygons that they represent are geometrically equivalent.

Geometric equivalence, like topological equivalence, is an equivalence rela-
tion. This means that Geo(n) can be partitioned into disjoint components, where
any two elements of the same component are path connected. If two polygons
are geometrically equivalent then they lie in the same component of Geo(n).

Now we will take a more formal look at the discriminant (the space of poly-
gons that contain self intersection). A polygon (va, vb, ..., vn) is in

∑n
if some

arbitrary edge 12 intersects another arbitrary edge 34, in which case it will
satisfy,

(v2 − v1)× (v3 − v1) · (v4 − v1) = 0

(v2 − v1)× (v3 − v1) · (v2 − v1)(v4 − v1) < 0

(v4 − v3)× (v1 − v3) · (v4 − v3)(v2 − v3) < 0.

2.3 Equilateral Knots

Paths in Geo(n) do not preserve edge length, that is, lengths may be stretched or
shrunk indefinitely. We may want to impose greater rigidity by fixing the edge
length. Specifically, we consider the space Equ(n).

Definition 16. Equ(n) is the space of all hexagonal knots with all edges of length
1.

We can construct Equ(n) from Geo(n) by considering the function f : Geo(6) →
Rn where

f(v1, ...vn) = (||v2 − v1||, ..., ||vn − v1||). (2)

For (v1, ...vn) ∈ Geo(n), f gives a vector containing the side lengths of each
edge of the polygon. Thus we can define:

Equ
(6) = f−1(1, 1, ..., 1). (3)

Recall that Geo(n) is 3n-dimensional. With the addition of edge-length con-
dition, we lose n dimensions.

Theorem 3. Equ(n) is a 2n-dimensional submanifold of Geo(n)

We can formalize paths in Equ(n) in the same way as in Geo(n).

Definition 17. A path in Equ(n) is a continuous map from the interval [0, 1]

to Equ(n).
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A path in Equ(n) is different from one in Geo(n). In Geo(n), we can stretch
the edge lengths as we move through a path, but in Equ(n) the edges are fixed
throughout the path. As with Geo(n), two knots are equilaterally equivalent if
there is a path in Equ(n) between them.

For 3 ≤ n ≤ 5, both Geo(n) and Equ(n) have exactly one component, that
of unknots, as expected given Theorem 2. In other words, given any geometric
knot with 3 ≤ n ≤ 5 sides, it can be deformed to a planar polygon through a
path in Geo(n). If it is equilateral, it can be deformed to a planar regular polygon
through a path in Equ(n).

2.4 Path-Components of Geo(6) and Equ(6)

Recall that there are two topological components of trefoils: right-handed and
left-handed trefoils. Since trefoils can be constructed using only 6 edges, we
must have at least three components in Geo(6) (unknots, left-handed trefoils,
and right-handed trefoils).

Theorem 4 (Calvo 2001). Geo(6) has 5 path-components. One component con-
sists of unknots, two components consist of right-handed trefoils and two com-
ponents consist of left-handed trefoils.

These additional components are the first evidence that geometric knotted-
ness is different from topological knottedness. There are two different types
of right-handed hexagonal trefoils, while there is only one component of right-
handed topological trefoils.

The two components of right handed hexagonal trefoils is a result of our
choice of root (v1). In other words, if one takes a physical configuration of a
hexagon and chooses a root and an orientation, and then shifts the root by one,
the resulting hexagon will be in a different component of Geo(6) from the original
hexagon. By Theorem 2.5 (Calvo, 2001), if we consider some subgroup Γ of the

dihedral group ≺ r, s �, then Geo(6)/Γ has only three components if and only
if Γ is not contained in ≺ s2, rs �. That is, if we allow for some combination
of rotation and reflection that is not in the stabilizer, then we dissolve the
boundary between the two extra components.

We can now classify Equ(6) in a similar way. Recall that two hexagons are
equilaterally equivalent if there is a path between them in Equ(6).

Theorem 5 (Calvo, 2001). Two equilateral hexagons are equilaterally equivalent
if and only if they are geometrically equivalent.

Thus there are at least as many path components of Equ(6) as there are of
Geo

(6). In fact, Equ(6) has the same number of components as Geo(6).

Theorem 6 (Calvo, 2001). Equ(6) has 5 path components.

By combining these two theorems, we know that each of the five components
of Geo(6) contains a single connected component of Equ(6), as depicted in Figure
5.
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Figure 5: The five components of Geo(n) with the submanifold Equ(n) shaded.

2.5 The Knot Invariant

We want to distinguish between the five path components of Equ(6). In order
to describe the combinatorial knot invariant we must discuss two new concepts:
chirality and curl. The knot invariant, sometimes referred to as joint chirality-
curl, will allow us to distinguish between the different components of Geo(6), and
thus also between the components of Equ(6).

2.5.1 Chirality

Chirality will allow us to distinguish between unknots, left-handed trefoils and
right-handed trefoils. Consider a hexagon H = 〈v1, v2, v3, v4, v5, v6〉. Let T2
refer to the triangular disc determined by the vertices v1, v2, and v3, and oriented
by the “right hand rule” wrapping from lower to higher numbered vertices. We
define T4 and T6 in the same way as the triangles with v4 and v6 respectively
as the middle vertices. We will describe everything in terms of T2 for now, but
one can easily generalize the idea for T4 and T6.

We define ∆2, the algebraic intersection number of T2, as the sum of all
piercings of T2, where a positive piercing (in accordance with the right hand
rule) has value +1 and a negative piercing has value −1. Notice that T2 can
only be pierced by edges that don’t share a vertex with the triangular disc itself.
Thus only edges 45 and 56 can pierce T2. But because both of those edges are
adjacent, they cannot pierce in the same direction without requiring one of them
to bend. So it follows that ∆2 must take on values of either −1, 0, or +1.

Definition 18. The chirality of a hexagon is the product of the three algebraic
piercing numbers, ∆2∆4∆6.

This can take on values of −1, 0, or +1, but it actually turns out that if the
chirality is +1 then all three algebraic intersection numbers are +1, and vice
versa for −1 chirality. Thus we have the following result showing how these
three values fully identify the topological knot type of H.

Theorem 7 (Calvo, 2001). Let H be a hexagon. Then
(I) H is a right-handed trefoil ⇐⇒ ∆2 = ∆4 = ∆6 = 1.
(II) H is a left-handed trefoil ⇐⇒ ∆2 = ∆4 = ∆6 = −1.
(III) H is an unknot ⇐⇒ ∆i = 0 for some i ∈ {2, 4, 6}.
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2.5.2 Curl

The curl distinguishes within the two components of right handed trefoils and
within the two components of left handed trefoils. Recall that unlike topological
trefoils, rooted oriented hexagonal trefoils are not reversible, which is a result of
picking a root vertex. This is what gives us the two extra components in Geo(6),
that curl will allow us to identify.

Definition 19. The curl of a hexagon is the sign of the z-coordinate of v2 when
v1, v3, and v5 are placed counterclockwise in the xy-plane. Thus
curlH = sign((v3 − v1)× (v5 − v1) · (v2 − v1)).

The sign of the z-coordinate of v2 tells us whether a trefoil is positive curl
or negative curl. By Corollary 2.3 (Calvo, 2001), this classification is invariant
under geometric deformations. Even though it is based only on v2, it actually
tells us about the location of v4 and v6 too.

Lemma 8. If H is a trefoil and v1, v3, and v5 are oriented counterclockwise in
the xy-plane, then the sign of the z-coordinate of v2 will be the same as that of
v4 and v6

Proof. We must show that if H is a positive curl trefoil, then all three evenly
numbered vertices will be above the xy-plane. A nearly identical argument will
exist for negative curl.

Suppose H is a positive curl trefoil. Then by definition v2 lies above the
plane. Lets assume that H is a trefoil with chirality +1, with confidence that a
similar argument can be made for −1. Thus T2 is pierced by the edge 45. But
v5 lies in the plane, so since the entire interior of the disc T2 is above the plane,
it follows that v4 lies above the plane.

Then the interior of T4 must be above the plane, and 61 must pierce T4.
Sine v6 is in the plane, it follows that v6 must be above the plane.

2.5.3 The Knot Invariant

We combine chirality and curl into what is sometimes called the joint chirality-
curl, which is our combinatorial knot invariant.

Definition 20. The joint chirality-curl of a hexagon H is the ordered pair
J (H) = (∆2∆4∆6, ∆2

2∆2
4∆2

6curl(H))

Note that the multiplier in front of curl(H) just ensures that the term is 0
if H is an unknot. The values of this ordered pair will correctly classify the
component of Geo(6) that a given hexagonal knot falls under.

Theorem 9 (Calvo, 2001). The joint chirality-curl is an invariant of hexagons
under geometric deformations. The geometric knot type of a hexagon H is
completely determined by the value of its joint chirality-curl, since J (H) = (0, 0)
iff H is an unknot; J (H) = (+1, c) iff H is a right-handed trefoil with curlH = c;
and J (H) = (−1, c) iff H is a right-handed trefoil with curlH = c.
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This follows from the fact that both curl and chirality are invariant under
geometric deformations. Note that while this knot invariant by definition distin-
guishes between the five components of Geo(6), it also distinguishes between the
five components of Equ(6) since two hexagons that are geometrically equivalent
in Geo(6) are also equivalent in Equ(6).

We can derive more information about the four components of trefoils. We
are able to identify which edges must be piercing each triangular disk T2, T4,
and T6. This will be helpful in efficiently allowing us to classify a random
hexagon. We identify the piercings, shown in the following tables, through a
similar analysis as in the proof of Lemma 8.

J (H) = (+1,+1):
Triangle Pieced By

T2 45
T4 61
T6 23

J (H) = (+1,−1):
Triangle Pieced By

T2 56
T4 12
T6 34

J (H) = (−1,+1):
Triangle Pieced By

T2 56
T4 12
T6 34

J (H) = (−1,−1):
Triangle Pieced By

T2 45
T4 61
T6 23

3 Some Symplectic Geometry

A manifold is a topological space that is locally homeomorphic to Rn. A sym-
plectic manifold is an even dimensional manifold with a closed non-degenerate
two form, typically denoted ω. If there is a Hamiltonian circle action on a man-
ifold M , then there exists a moment map µ : M → R. For any x ∈M , µ(x) is a
quantity associated with x that is invariant over the orbit of x. In general, if you
have a product of k such circle actions there is a map µ : M → Rn. Now µ(x)
is a k-dimensional vector associated with x that is invariant over the orbit of x.
When k is half of the dimension of M , we call M a toric-symplectic manifold.

The image of µ will always form a convex moment polytope, P. The vertices
of P correspond to points in M that are invariant under the torus action. If we
can invert µ we get the action-angle map α : P × Tn →M .

For example if M is the unit 2-sphere with ω the standard area form, then
M is a symplectic manifold. Then if we define the circle action to be a rotation
of the sphere about the z-axis we get a toric symplectic manifold. In this case,
the moment map, µ : S2 → R, returns the z-coordinate of any point, and the
moment polytope is the interval [-1,1]. The endpoints of this polytope, ,-1 and
1, correspond the fixed points of the circle action, the north and south pole.
The inverse of the moment map is α : [−1, 1]× S1 → S2.

The following theorem will be helpful in a number of instances.
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Theorem 10 (Duistermaat–Heckman). Suppose M is a 2n-dimensional toric
symplectic manifold with moment polytope P, Tn is the n-torus (n copies of
the circle) and α inverts the moment map. If we take the standard measure on
the n-torus and the uniform (or Lebesgue) measure on int(P), then the map α :
int(P)TnM parametrizing a full measure subset of M in action-angle coordinates
is measure-preserving. In particular, if f : MR is any integrable function then∫

M

f(x)dm =

∫
P×Tn

f(d1, ..., dn, θ1, ..., θn)dVolRndθ1 ∧ ...θn

. If f(d1, ..., dn, θ1, ..., θn) = fd(.1, ..., dn)fθ(θ1, ..., θn), then∫
M

f(x)dm =

∫
P
fd(d1, ..., dn)dVolRn

∫
Tn

fθ(θ1, ...θn)dθ1 ∧ ...θn

.

4 Action Angle Coordinates

We can describe any equilateral hexagon by listing its 6 vertices: v1, v2, v3, v4, v5, v6.
This representation has two draw backs. First, it is inefficient. It requires 18
numbers (three for each vertex), but the space of equilateral hexagons up to
translation and rotation is 6-dimensional. Requiring that the edge lengths are
fixed gives us 6 additional equations which reduces the space to 12 dimensions.
Modding out by translations removes 3 dimensions and modding out by rota-
tions removes another 3 dimensions, which leaves us with 6 dimensions.

Listing the vertices also makes it difficult to randomly generate hexagons.
It is not obvious how to pick 6 points such that they form a hexagon with
unit edge lengths. Cantarella and Shonkwiler (2016) gives a 6-dimensional
parameterization of the space of equilateral hexagons. We will first give some
intuition behind their method before going more formally into the details.

We first must pick a triangulation of the hexagon. There are five triangu-
lations to choose from. In order to best harmonize with the knot invariant, we
will use the triangulation shown in Figure 6.

Figure 6: The chosen triangulation of the regular planar hexagon
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Then we can stretch or shrink the diagonal lines that compose the triangu-
lation, and ”fold” the other triangles through some angle around each of those
lines. While not immediately obvious, it will turn out that any hexagon, up
to translation and rotation, can be realized in this manner. Thus, we can de-
scribe any hexagonal knot as a point with 6 coordinates: three that describe
the lengths of the diagonal lines (d1, d2, d3) and three for the angles (θ1, θ2, θ3).

Figure 7: Triangulating the hexagon (left), stretching and shrinking along the
dotted line (middle), and folding the triangles (right)

4.1 Action-Angle Coordinates

These 6 coordinates that describe an equilateral hexagon are called the action-
angle coordinates. A generic point is denoted (d1, d2, d3, θ1, θ2, θ3). Each point
corresponds to a unique equilateral hexagon up to translation and rotation. To
construct the hexagon, create a triangle with side lengths d1, d2, and d3. We
call this triangle T . Next we make the three triangles T2, T4, T6 (the subscript
denotes which vertex of the hexagon is uniquely contained in the given triangle).
These triangles each have one side of length d1, d2, and d3, respectively, and two
sides of length 1. Next we “glue“ each of these triangles to T , as shown below.
We want to do this in such a way that the resulting hexagon is planar. There
are two ways to do this. Intuitively, one is where all of T2, T4, and T6 are placed
on the “outside” of T , and the other is the configuration where the triangles are
folded inward. We choose for them to be folded inward. More formally, we glue
the triangles in such a way that the interiors of each of T2, T4, and T6 intersect
the interior of T .

Now we will rotate each of T2, T4, and T6 about the line that joins them to
T through angles θ1, θ2, and θ3, respectively. In order to do this we must define
an orientation for the rotations. We say that the initial configuration is when
all of the angles are 0. Then as the angles increase from 0, the triangles T2, T4,
T6 will come above the plane containing T .

Note that this construction gives an injective function from the space of
action-angle coordinates to the space of equilateral hexagons in R3 up to transla-
tion and rotation. Thus, to complete our parametrization of equilateral hexagons
in R3, we must show that every such hexagon can be constructed using some
action-angle coordinate.
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Theorem 11. Every rooted and oriented equilateral hexagon in R3 can be de-
scribed using action angle coordinates, up to translation and rotation.

Proof. Consider any rooted oriented hexagon v1, v2, · · · , v6 in R3. Then we can
recover the action-angle coordinates that correspond to that hexagon in the
following way. Let P be the plane containing v1, v3 and v5. Then let d1, d2,
and d3 be the lengths of the segments 13, 35, and 51, respectively. Let n be
the vector 13 × 14, n2 = 12 × 13, n4 = 34 × 35, and n6 = 56 × 51. Then
let θ1, θ2, and θ3 be the angles between n and n2, n and n4, and n and n6,
respectively. Thus the action-angle coordinates (d1, d2, d3, θ1, θ2, θ3) uniquely
describe the given hexagon.

4.2 Visualizing the Space of Action-Angle Coordinates

Each point in the space of action-angle coordinates has 6 coordinates. The first
three describe lengths and the last three describe angles. So we will visualize
this space as the union of two three dimensional spaces, one for the lengths, and
one for the angles.

4.2.1 The Moment Polytope, P

Not all choices of d1, d2, and d3 correspond to realizable equilateral hexagons.
The four triangles in Figure 6 must cooperatively satisfy 6 triangle inequalities.
Since the side lengths of the hexagon are all 1, we must have 0 ≤ di ≤ 2 for each
di. The inner triangle T must satisfy three triangle inequalities: d1 ≤ d2 + d3,
d2 ≤ d1 + d3, and d3 ≤ d1 + d2.

These 6 inequalities give a bounded region in R3, called the moment polytope,
P. Every tuple (d1, d2, d3) corresponding to a valid choice of diagonal lengths
is contained in P. The moment polytope has volume 4, which is exactly half of
the volume of the cube containing it.

Figure 8: The moment polytope for the chosen triangulation, contained inside
of the cube of side length 2
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Note that points on the boundary of P correspond to singularities, so when
sampling we are concerned only with the interior. For example, if di = 2 for any
i, then the angle between to edges of the hexagon must be π, making a length 2
straight segment, so the hexagon would actually be a pentagon. Furthermore,
given certain (θ1, θ2, θ3), there will be points (d1, d2, d3) in the interior of the
moment polytope corresponding to non-embedded polygons (polygons with at
least one pair of intersecting edges). However, the space of these points has
measure 0.

4.2.2 The Three Torus, T 3

We need to sample tuples (θ1, θ2, θ3) where 0 < θi < 2π. The three-torus T 3

describes this space. T 3 is a product of 3 circles, S1 × S1 × S1. Choosing one
point from each circle gives us three angles. We can represent T 3 as a cube, as
in 9, where we identify opposite faces.

In this construction there appears to be a difference between 2π and 0. For
example, the point (0, 0, 2π) appears to be different from (0, 2π, 0). Since 0 = 2π,
these points are actually the same. This is why the opposite sides of the cube
are identified to form a three dimensional torus. To actually connect up these
pairs of faces visually would require a fourth dimension. We can sample the
last three coordinates of any point in the space of action-angle coordinates by
sampling a point in the the three dimensional torus represented as a cube.

Figure 9: The 3-Torus T 3 represented by a cube with identified faces. T 3

contains all tuples (θ1, θ2, θ3) with 0 < θi < 2π.

4.3 The Symplectic Geometry of Equ(n)

Let Pol(6) denote the space of all equilateral possibly singular hexagons up to
translation for a given triangulation. The action-angle coordinates give a map
α : P × T 3 → Pol(6)/SO(3). Cantarella and Shonkwiler prove that the space
parametrized by the interior of P and the 3-torus is a toric symplectic manifold,
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call this space P̂ol(6). Thus we can apply theorem 10 to show that α restricted
to the interior of the moment polytope is a measure preserving map. This means

that one can randomly sample points from P̂ol(6) by randomly sampling points
from the interior of the moment polytope and the 3-torus. This vastly simplifies
the process of generating random equilateral hexagons.

In addition, the space P̂ol(6) is actually the ‘’correct” space for our purposes.
The physical configuration and knot type is invariant under translation and

rotation, and P̂ol(6) is the space of equilateral hexagons up to translation and
rotation.

5 Randomly Generated Knots

Using the action-angle coordinates model given by Cantarella and Shonkwiler
(2016), we randomly generated approximately 50 million knots, and proceeded
to categorize them into knot type. This gave valuable insight into the actual
location of knots within the moment polytope and the rarity of them. We
found only 6, 915 trefoils, which estimates that approximately 0.01383% of all
hexagonal knots are trefoils.

Figure 10: Action-Angle coordinates corresponding to 6915 randomly generated
trefoils (colored by trefoil type in T 3.

The action-angle coordinates make sampling random equilateral hexagons
surprisingly easy. We uniformly selected d1, d2, and d3 from the range [0, 2] and
θ1, θ2, and θ3 from the range [0, 2π]. We then threw out any points that lay
outside P, which is approximately half since P has volume 4. So although we
generated 100 million values, only about 50 million corresponded to knots. We
then convert from action-angle coordinates to the 6 vertices in R3.

To test if each given equilateral hexagon was a trefoil we needed to confirm
that the three triangular discs (T2, T4, and T6) were each pierced by another
edge of the knot. The exact edges that pierced and the value of the θ’s would
allow us to deduce the exact type of trefoil. To accomplish all of this we would
need a formula to tell us whether a given edge pierced a triangular disc, which
we could then run on each potential edge and triangular disc pairing.
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We will describe this with the example of checking if edge 45 pierces T2, but
the method generalizes easily to all other edge and triangular disc pairings. We
first want to find the intersection of 45 with the plane that contains T2. We do
this with a parametric definition of the plane and the line 45 in terms of variables
u, w, and t respectively. We define the plane by v1 + (v2− v1) ·u+ (v3− v1) ·w.
We define the line by v4 + (v5 − v4) · t. Next we set them equal to each other
and solve for values u∗, w∗ and t∗. This value for t allows us to compute the
exact coordinates of a point p, which is where 45 intersects the plane. We get
p = v4 + (v5 − v4) · t∗.

Finally we need to determine if p is within the triangle T2 or if it is elsewhere
in the plane. We consider three matrices: [~p, ~v1, ~v2], [~p, ~v2, ~v3], and [~p, ~v3, ~v1]. If
the determinant of each of these matrices has the same sign, then p is inside of
T2, thus indicating that 45 pierces T2.

6 Results

To bound the knotting probability of equilateral hexagons we consider the mo-
ment polytope and the 3-torus separately. The following lemma will be helpful
in allowing us to draw conclusions about knots based on their projections. It
tells us that if we have a projection in which two triangles don’t intersect each
other, neither triangle pierces the other in R3.

Lemma 12. Let A and B be two triangles in R3. Let P be a projection onto
some plane. Then if P (int(A)) ∩ P (int(B)) = ∅, int(A) ∩ int(B) = ∅.

Proof. Assume otherwise. Then there is at least one point p ∈ int(A) ∩ int(B).
Let P (p) = h. Since p is in int(A) and int(B), h must be in P (int(A)) and
P (int(B)), so P (int(A)) ∩ P (int(B)) 6= ∅, contradicting our initial assumption.

6.1 Bounding the angles (θ1, θ2, θ3)

We can significantly narrow down the knotting probability by considering which
values of θ1, θ2, and θ3 always correspond to unknots, regardless of the values
d1, d2, and d3.

Theorem 13. Let H ∈ Equ(6)/(SO(3)×R3) be paramaterized with our action-
angle coordinates (d1, d2, d3, θ1, θ2, θ3). If at least two θ values are between π

2
and 3π

2 then the hexagon will be an unknot.

Proof. Let H be an equilateral hexagon in standard position. That is T , the
triangle spanned by v1, v3, and v5, is oriented counter-clockwise in the xy-plane.
In order to have a trefoil, it must be true that (among other things) either Case
1: T4 is pierced by 12 and T6 is pierced by 34, or that Case 2: T4 is pierced by
61 and T6 is pierced by 23. Hence, in order to have a trefoil we must have the
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Figure 11: A hexagon with two θ’s at π/2.

triangles T4 and T6 interlaced, to satisfy the requirement that either 61 pierces
T4 or 34 pierces T6.

Vary θ2 from π
2 to π. As T4 rotates from perpendicular to planar (on the

exterior) with respect to T , consider the line drawn by continually projecting
v4 onto the xy-plane, shown as a dotted line in figure 12. Starting at θ2 = π

2 ,
v4 will project directly onto the edge of T from v3 to v5. As we rotate T4, this
projection will only move outward from T .

Figure 12: The projections of v4 and v6 as θ2 and θ3 vary from π/2 to π.

The same process can be done for θ3 and T6. As seen in Figure 12, these two
lines extend outward, each perpendicular to a different side of T . So they must
have between 0 and π degrees between each other, telling us that they will not
intersect.

Hence, by Theorem 12, since the projections of v4 and v6 over the range
[π2 , π] don’t intersect, the triangles can’t possibly have edges that pierce each
other, and so the configuration is unknotted.

This entire result holds for when at least two θ’s are between π and 3π
2 as

well, as that situation is geometrically identical, just reflected down across the
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xy-plane. Thus we can conclude that if any two θ’s are within [π2 ,
3π
2 ] then we

have an unknot.

Theorem 14. The portion of the 3-torus in which hexagonal equilateral trefoils
can occur has a volume of at most 1

8 of the total volume.

Proof. Think of points on the 3-torus as coordinates within the 2π × 2π × 2π
cube. The coordinate value in each dimension tells us how far around that axis
of the 3-torus we are, and each corresponds to one of θ1, θ2, or θ3. We can split
this cube up into 8 cubes each of sidelength π. In order to have a trefoil, we must
have all three vertices v2, v4, and v6 together above T or together below (recall
curl). Hence we can rule out 6 of the 8 cubes, leaving only [0, π2 ]× [0, π2 ]× [0, π2 ],
and [π, 3π2 ]× [π, 3π2 ]× [π, 3π2 ]. Let’s consider only the first (and all our findings
will hold for the other due to symmetry).

Figure 13: The region S of the 3-torus where knots can occur.

See Figure 13. We can split this up into 8 smaller cubes each of side length
π
2 . Only 4 of these 8 cubes contain points satisfying the constraint imposed by
Theorem 14. The four of them are [0, π2 ]×[0, π2 ]×[π2 , π] and [0, π2 ]×[π2 , π]×[0, π2 ]
and [π2 , π]× [0, π2 ]× [0, π2 ] and [0, π2 ]× [0, π2 ]× [0, π2 ]. Symmetrically, we have four
cubes in the opposite corner corresponding to the case where curl is negative.
Thus we have narrowed down to 1

4 of the original space, and from there cut it
in half again, so trefoils can be created within at most 1

8 of the original volume.
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6.2 Bounding diagonal lengths (d1, d2, d3)

Consider an equilateral hexagon with all side lengths equal to 1 such that when
each of the three triangles T2, T4, and T6 are rotated all the way in to θ = 0
or θ = π, adjacent edges completely overlap. Then the triangle T described by
the action coordinates has circumcenter where v2, v4, and v6 coincide and can
be inscribed in a circle of radius 1.

Lemma 15. Let H ∈ Equ(6)/(SO(3) × R3) be paramaterized with our action-
angle coordinates (d1, d2, d3, θ1, θ2, θ3). Consider a triangle inscribed in a circle
of radius 1, with side lengths a, b, and c , where c is the length of the longest
side. Then, if a = d1, b = d2, and d3 > c, then the hexagon must be an unknot.

Proof. Let O denote the circumcenter at (O = v2 = v4 = v6) and let ∠xyz
denotes the angle vxvyvz. Recall that T denotes the triangle spanned by v1, v3,
and v5.

Case 1: Shown in Figure 14. The circumcenter is inside triangle T . In this
case, increasing d3 while holding the other side lengths constant causes ∠135 to
increase. Since the side lengths of T2 and T4 are fixed, ∠53O and ∠O31 are fixed
as well. Therefore, increasing d3 causes the angles to separate so that triangles
T2 and T4 coincide only at the point v3.

Figure 14: Case 1 in the proof of Lemma 8, when the circumcenter is inside the
triangle. The image on the left shoes when d3 = c and the image on the right
shows when d3 > c so T2 and T4 are seperated.

Case 2: Shown in Figure 15. The circumcenter is outside the triangle T .
Since d3 is the longest side, v1 must be located on the smaller arc bounded by
d3. Otherwise, d1 or d2 will be longer than d3. Thus, the edge where 12 and
61 coincide must intersect d3. Increasing the length of d3 while holding the
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other lengths constant will cause ∠513 to increase while ∠516 and ∠213 remain
constant. Then the triangles coincide only at v1.

Figure 15: Case 2 in the proof of Lemma 8, when the circumcenter is outside of
the triangle.

In either case, if d3 > c then two of the triangles in the projection are
disjoint. In order for a hexagon to be knotted, for each pair of triangles in T2,
T4, T6, one must pierce the other or vice versa. By Theorem 12 if two triangles
don’t intersect in the projection of a knot, neither can be pierced by the other
and the hexagon must be unknotted.

Furthermore, if in T the triangles T2 and T4 don’t overlap when they are
folded in to θ = 0, then they can’t overlap for any angles. To see this, consider
the projection of T2 and T4. Figure 16 shows the process of folding out T2 and
T4 to any angle. The vertex v2 moves along the perpendicular bisector of 13,
and similarly the vertex v4 moves along the perpendicular bisector of 35. Thus
for no angles can the interiors of two triangles overlap.

Figure 16: Angles folding out from θ = 0, showing that the distance between
T2 and T4 increases.
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Theorem 16. The portion of the moment polytope in which hexagonal equilat-
eral trefoils can occur has a volume of at most π.

Proof. For any triangle inscribed in a circle of radius 1, the following relationship
derived from the law of cosines holds between the side lengths a, b, and c:

c2 = a2 + b2 − 2ab arccos
c

2
= a2 + b2 − 2ab

√
4− c2 (4)

This equation is symmetric with respect to a, b and c, so they can correspond
to any permutation of d1, d2 and d3. Given two side lengths a and b, solving
the previous equation gives us an upper value for c, which we call Uc, and a
lower value of c, which we call Lc. These equations describe all tuples (a, b, c)
corresponding to an inscribed triangle.

Uc =
a

2

√
4− b2 +

b

2

√
4− a2 (5)

Lc =
∣∣∣a
2

√
4− b2 − b

2

√
4− a2

∣∣∣ (6)

Uc > Lc and Lc < a for all values of a, b and c, meaning the surface
produced by the Lc equation will not be in the region where c is the longest
side, so we don’t need to consider it. Some portion of the surface produce by
the Uc equation will be in the region where c is the longest length, and this is
the portion we will consider.

We can divide the moment polytope into 6 sections depending on the relative
lengths of the sides: one such is the region where c > b > a, and the others
are all the permutation of the variables in that inequality. Given the symmetric
nature of the polygons, we will only consider the region where c > b > a. Any
conclusions drawn about this region can be extended to the other 5 regions
where the lengths are ordered differently. Figure 17 shows the one of the 6
regions where d3 > d2 > d1 and d3 < Uc

Putting the 6 symmetric sections together, we get a region contained in the
moment polytope shown in figure 18. we call this region R. Given a and b,
Uc tells us the maximum value for c before we are guaranteed an unknot. So
we seek to find the volume where c < Uc and c > b > a within the moment
polytope. To do this we compute the following integral:

∫ √3

a=0

∫ √2+
√
4−a2

b=a

a

2

√
4− b2 +

b

2

√
4− a2 − b dbda =

π

6
(7)

This is the volume of the region shown in figure 17. Now let us consider the
disjoint region where c > a > b. We can do a nearly identical integral, just with
a and b swapped, and will find that region’s volume to be π

6 as well. Finally, we
can derive Ua and Ub in the same way as we derived Uc. This gives analogous
integrals for the remaining 4 regions.
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Figure 17: Section of the moment polytope where d3 > d2 > d1 and d3 < Uc.

Altogether the moment polytope was divided into 6 regions, and bounding
each of them resulting in volumes of π

6 . Thus the total volume of the region
where (d1, d2, d3) can correspond to trefoils is bounded above by π.

6.3 Our Bound on the Knotting Probability

We have bounded the region of potential trefoils in the moment polytope to
just volume π. The polytope has a volume of 4, so the proportion that can
correspond to trefoils is π/4. We have also bounded the proportion of potential
trefoils in the 3-torus to 1/8. Because the map from these regions to the space
of equilateral hexagons is measure preserving, we can bound the proportion of
possible trefoils by simply multiplying together these values.

Theorem 17. The probability that a randomly generated hexagon is a trefoil is
at most π

32 .

Proof. The knotting probability is the expected value of the function

χ(H) =

{
1 if H is a trefoil

0 if H is an unknot

over all of the non-singular equilateral hexagons in Êqu(6) = Equ(6)/(SO(3) ×
R3). (Êqu(6) is parametrized using the T135 triangulation and the action angle
map defined in Section 4.) More precisely, this expected value is

E(χ) =

∫
ˆEqu(6)

χ∫
ˆEqu(6)

1
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Figure 18: R, the region of the moment polytope where d3 < Uc,d2 < Uc, and
d1 < Uc.

We know that for any (d1, d2, d3, θ1, θ2, θ3), χ(d1, d2, d3, θ1, θ2, θ3) is bounded
above by

g(d1, d2, d3, θ1, θ2, θ3) =

{
1 if (d1, d2, d3) ∈ R and (θ1, θ2, θ3) ∈ S
0 otherwise.

Let R be the region of the polytope which could contain trefoils (defined in the
proof of theorem 16), and let S be the region of the cube which could contain
trefoils defined in the proof of theorem 14 . Then we can write g as gd ·gθ where

gd(d1, d2, d3) =

{
1 if (d1, d2, d3) ∈ R
0 otherwise

, and

gθ(θ1, θ2, θ3) =

{
1 if (θ1, θ2, θ3) ∈ S
0 otherwise.

.

So we can use Theorem 10 to find that

E(g) =

∫
P gd(d1, d2, d3)dVolR3 ·

∫
T 3 gθ(θ1, θ2, θ3)dθ1dθ2dθ3∫

P 1dVolR3 ·
∫
T 3 1dθ1dθ2dθ3

= (π/4)·(1/8) = π/32

Thus this knotting probability of a random equilateral hexagon is E(χ) ≤
E(g) = π/32.

Our bound is approximately 0.098, in contrast to the 0.5 bound that was
given in previous literature. We clearly have a vast improvement, but as our
simulations show the bound could still be improved drastically.
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Figure 19: The bounded region R contained in the moment polytope P with the
points generated by the experiment (left), and the 3-torus T 3 with the bounded
region S and the points sampled by the experiment (right).

.
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